Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
The magnetic equivalent circunt can be drawn as.R - reluctance of magnetic path.R=\frac{l \cdot}{M_{0} M_{r} \cdot A}, H_{r_{\text {Dose }}}=2000, H_{1 \text { air }}: 1 \text {. }This implies that R_{\text {airgap }}>R_{\text {wore1, }}, R_{\text {core 2 }}, Rare 3\therefore R \sim R_{\text {airgap. (for easiness in calculation). }}^{\therefore \text {. }}.Ampere turns (NI) =100 \times 5=500 A T.\mathrm{Hg}=A T / \lg \quad \mathrm{lg}. air gap length.\lg _{g}=0.5 \mathrm{~cm}\therefore \mathrm{Hg}=500 /\left(0.5 \times 10^{-2}\right)=10^{5} \mathrm{AT} / \mathrm{m}\text { Now } B g=M_{0} H g=4 \pi \times 10^{-7} \times 10^{5}=0.1256 \mathrm{~T}Magnetic energy per anit volume stored in air gap is,E_{v}=\frac{1}{2} \frac{B_{q}}{H_{0}}Force exerted on plunger, F_{p}=E_{v} \cdot A_{g}\text { and } \begin{aligned}A_{g} & =\pi \cdot \frac{d^{2}}{4} \quad(d=0.02 \mathrm{~m}) \\A_{g} & =3.14 \times 10^{-4} \mathrm{~m}^{2} \\F_{p} & =E_{v} \cdot A_{g}=\frac{1}{2} \frac{B_{g}}{\mu_{D}} \times A_{g}=\frac{1}{2} \times \frac{0.1256}{4 \pi \times 10^{-7}} \times 3.14 \times 10^{-4} \\F_{p} & =15.7 \mathrm{~N}\end{aligned}Ans. Force exerted on plunger is 15.7 \mathrm{Nm}. ...