Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution:-\rightarrow According to NSCP code for timber(a) maximum bending strees of YAKAL =24.50 \mathrm{MPa} with 80 \% selenderness carrection factor \rightarrow allowubl bending strers =24.80 \times 0.8=19.84 \mathrm{MPa}(b) maximum compressive load =15.8 \mathrm{MPa}allowable compressive load =15.8 \times 0.8=12.64 \mathrm{MPa}(C) check for compressive stress\rightarrow \text { compressive load }=4 \text { cour }\rightarrow comprerive spres = Compressive loadArea of crossection\begin{aligned}\rightarrow \text { compressive stress } & =\frac{400 \times 1000}{200 \times 350}=5.7 \pm \mathrm{N} / \mathrm{mm}^{2} \\& =5.71 \mathrm{MPa}<12.64 \mathrm{MPa}\end{aligned}\rightarrow check for Bending compressivestress\rightarrow Bending moment diagram of beam\begin{array}{l}\rightarrow \text { maximum the Bendingmoment }=\frac{\omega l^{2}}{24}=\frac{26 \times 4^{2}}{24} \\=17.33 \mathrm{kN}-\mathrm{m} \\\end{array}\rightarrow maximum - ve Bending moment =\frac{\omega l^{2}}{12}=\frac{26 \times 4^{2}}{12}=34 \cdot 67 \mathrm{kN}-\mathrm{m}\rightarrow maximum Bending moment on the beam =34.67 \mathrm{ur}-\mathrm{m}\rightarrow So maximum Bending stress \left(f_{b}\right)\begin{array}{l}f_{\text {bmax }}=\frac{B M_{\text {max }}}{I} \times y_{\text {amax }} \\f_{\text {max }}=\frac{39.67 \times 10^{6} \mathrm{~N}-\mathrm{mm}}{200 \times \frac{350^{3}}{12}} \frac{350}{2} \mathrm{~mm} \\f_{\text {bomax }}=8.99 \mathrm{mPa}\end{array}\sum_{\frac{m}{I} x y}^{200}but allowable bending strees is 19.84 \mathrm{MPa}\rightarrow Hence beam is safe in both compresion as well as in Bending: ...