Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

So1n Given V_{T_{N}}=0.4 \quad K_{n}^{\prime}=100 \mathrm{~mA} / \mathrm{V}^{2}V_{D S}=1.6 \mathrm{~V}, \quad \mathrm{Km}^{\prime}=\mu_{m} C_{0 x}Problem 1Here V_{G}=V_{D}\because For saturation region V_{D s}>V_{G s}-V_{t}Aecording to given ckt ArrougementV_{D}-V_{S}>V_{D}-V_{S}-V_{t} \quad\left(\because V_{G}=V_{D}\right)\therefore OUR MOSFET is in sat { }^{4}I_{D} \text { (sat) }=\frac{1}{2} \min \operatorname{Cox} \frac{\omega}{L}\left(V_{\text {Gs }}-v_{t}\right)^{2}here I_{D}=\frac{V_{S}}{R_{S}}=\frac{V_{S}}{10} \Rightarrow V_{S}=10 I_{D}Also \quad V_{D}=3.3 \mathrm{~V}\begin{array}{c}S V_{D}-V_{S}=1.6 \Rightarrow 3.3-10 I_{D}=1.6 \\3.3-1.6=10 I_{D} \\I_{D}=0.17 \mathrm{~mA}\end{array}ทow\begin{array}{l}0.17 \times 10^{-3}=\frac{1}{2} \times 100 \times 10^{-6} \times \frac{\omega}{L}\left(V_{\text {Gs }}-V_{t}\right)^{2} \\0.34 \times 10^{-3}=10^{-4} \times \frac{\omega}{L}(1.6-0.4)^{2} \quad\left(\because V_{U S}=V_{D S}\right) \\\frac{0.34 \times 10^{-3}}{10^{-4} \times 1.44}=\frac{w}{L} \Rightarrow 0.236 \times 10 \\\frac{\omega}{L}=2.36 \quad \text { Aws } \\\end{array}Problam 2.- converting the ckt into thererin equivehele V_{\text {th }}=\frac{U_{D D} R_{2}}{R_{1}+R_{2}} \quad is R_{+4}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}Let the trautistor is in saturation region\therefore \quad V_{G}=V_{t h}, \quad V_{S}=I_{D} R_{S} \quad V_{D}=3.3-I_{D} R_{D}Now,I_{D(\text { sat })}=\frac{1}{2} \times 100 \times 10^{-6} \times \frac{\omega}{L}\left(V_{4 S}-V_{t}\right)^{2}Aiso. VDS =1.6 (given)\begin{array}{l}\Rightarrow \quad 3.3-I_{D R_{D}}-I_{D R_{S}}=1.6 \\3.3-I_{D}\left(R_{D}+R_{S}\right)=1.6 \\\frac{3.3-1.6}{R_{D}+R_{S}}=I_{D} \\\frac{1.7}{R_{D}+R s}=I_{D} \\\end{array}Yow\begin{array}{l}I_{D(\text { sat })}=\frac{1}{2} \times 10^{-4} \times \frac{\omega}{L}\left(V_{\text {th }}-I_{D} R_{S}\right)^{2} \\\frac{1.7}{R_{D}+R_{S}}=\frac{1}{2} \times 10^{-4}\left(V \text { th }-I_{D} R_{S}\right)^{2} \times \frac{\omega}{L}\end{array}\begin{array}{l}\frac{\omega}{L}=\frac{1.7 \times 2}{10^{-4}\left(V_{t h}-I_{\left.D R_{S}\right)^{2}\left(R_{D}+R_{S}\right)}\right.} \\ \frac{\omega}{L}=\frac{3.4}{10^{-4}\left(R_{D}+R_{S}\right)\left(V_{+U}-I_{D} R_{S}\right)^{2}} \text { Aus } \\\end{array} ...