Answer Given Data:uniform dispributed load is omega. Cantilluer beam.Consider tho figure (1) from the guestion.Consider a rection xx at a distana x from the free end as shown in above figure.Find the bending moment at the distance. x.M_(x)=-(omega x)xx(x)/(2)=-(wx^(2))/(2)un'te the bending moment in the term of the differential equation.M_(x)=(EIdel^(2)y)/(dx^(2))=-(omegax^(2))/(2)Integate the equation (1){:[int E(d^(2)y)/(dx^(2))=int(omegax^(2))/(2)dx],[" EI "(dy)/(dx)=-(omegax^(3))/(6)+A]:}Integrate tho equation (2) w.ritin{:[EI int dx=int(-(omegax^(3))/(6)+A)dx],[EI=-(omegax^(4))/(24)+Ax+Delta-" ( ) "]:}Write down tho boundany condition. ... See the full answer