Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

\Sigma H=0 \Rightarrow about point " A "\begin{array}{c}H_{A}+10 \cos 60^{\circ}=0 \\H_{A}=-10 \cos 60^{\circ} \mathrm{K} \\H_{A}=-5 \mathrm{kft} \\\Sigma V=0 \Rightarrow V_{A}+V_{B}-10 \sin 30^{\circ}-0.5 \times 10=0 \\V_{A}+V_{B}=10 \mathrm{Kft}-10 \\M_{B}=0 \quad-0.5 \times 10 \times 15-10 \mathrm{sin} 30^{\circ}=0 \\V_{A} \times 20-V_{A}=75+5 \\V_{A}=\frac{80}{20} \mathrm{kft}\end{array}Substitute V_{A} in \varepsilon q (1)\begin{aligned}u+V_{B} & =10 \mathrm{kft} \\v_{B} & =6 \mathrm{kft}\end{aligned}Reactions:\begin{aligned}H_{A} & =-5 \mathrm{kft} \\V_{A} & =4 \mathrm{kft} \\V_{B} & =6 \mathrm{kft}\end{aligned} ...