1. Find the magnetic field strength at the center of curvature of a half-circle of thin wire in the positive-y half of the xy-plane with a radius of half a meter carrying a uniform current of 2 mA counterclockwise around the z-axis if the permeability is 4πx10^-7 T·m/A.
2. A straight wire carries current I along the z-axis from -z0 to +z0 in a region of permeability µ. Find the magnetic field vector at x=x0 on the x-axis.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Using Biot-Sqvert kus\begin{aligned}\overrightarrow{d B} & =\frac{\mu_{0} I}{4 \pi r^{3}}(\vec{r} \times \overrightarrow{d l}) \\d B & =\frac{\mu_{0} I}{4 \pi r^{3}} r \cdot d l \sin 90^{\circ} \\& =\frac{\mu_{0} I}{4 \pi r^{3}} r \cdot r d \theta . \quad \because d l=r \cdot d \theta \\B & \pi\end{aligned}\begin{aligned}\int_{0}^{B} d B & =\frac{\mu_{0} I}{4 \pi} \int_{0}^{\pi} d \theta \\B & =\frac{\mu_{0} I}{4 r} \\B & =\frac{\pi \times 10^{-7} \times 2 \times 10^{-3}}{0.5} \\& =12.57 \times 10^{-10}+(-\hat{k})\end{aligned}9 \operatorname{long}-2B=\frac{\mu_{0} I}{4 \pi x_{0}}\left(\sin \theta_{1}-\sin \theta_{2}\right) \quad \theta_{1}=-\theta_{2}\sin \theta_{2}=\sin \theta_{1}=\frac{20}{\sqrt{20^{2}+x_{0}^{2}}}\begin{aligned} B & =\frac{\mu_{0} I}{4 \pi x_{0}} 2 \sin \theta_{1} \\ & =f^{2} \\ B & =\frac{\mu_{0} I}{2 \pi x_{0}} \frac{z_{0}}{z_{0}^{2}+x_{0}^{2}} \quad \text { along } \quad y\end{aligned} ...