1- Find the second‑order Taylor formula for 𝑓(𝑥,𝑦)=(9𝑥+8𝑦)^2 at x0=(0,0). Note that ℝ2(0,𝐡)=0 in this case.
(Use symbolic notation and fractions where needed. Give your answer in the form of 𝑓(ℎ1,ℎ2)=f(l,m) where l=h1 and m=h2.)
Answer: 𝑓(𝑙,𝑚)=
2-Find the second‑order Taylor formula for 𝑓(𝑥,𝑦)=8sin(𝑥𝑦)+2cos(𝑥𝑦) at (0,0).
(Use symbolic notation and fractions where needed. Give your answer in the form of 𝑓(ℎ1,ℎ2)=𝑓(𝑙,𝑚) where l=h1 and m=h2.)
Answer: 𝑓(𝑙,𝑚)=f(l,m)= ....... + ℝ2(0,𝐡)
3-Let 𝑔(𝑥,𝑦)=7sin(𝑥𝑦)−9(𝑥^2)ln(𝑦)+8.. Find the degree 2 polynomial, 𝑝, which best approximates 𝑔 near the point (𝜋2,1).
(Use symbolic notation and fractions where needed.)
Answer: 𝑝(𝑥,𝑦)=
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
\begin{array}{l}f(x, y)=(9 x+8 y)^{2} \quad, x_{0} \rightarrow(0,0) \\ \text { 7. } f(x, y)=f\left(h_{1}, h_{2}\right)+f_{x}\left(h_{1}, h_{2}\right)\left(x-h_{1}\right)+f_{y}\left(h_{1}, h_{2}\right)\left(y-h_{2}\right)+ \\ \frac{f_{x x}\left(h_{1}, h_{2}\right)}{2}\left(x-h_{1}\right)^{2}+\frac{f_{y y}\left(h_{1}, h_{2}\right)\left(y-h_{2}\right)^{2}}{2}+ \\ f_{x y}\left(h_{1}, h_{1}\right)\left(x-h_{1}\right)\left(y-h_{2}\right) \\\end{array}\begin{array}{l} \rightarrow f^{\prime}(0,0)=0 \\ \rightarrow f_{x}=2(9 x+8 y) \cdot(9) \\ f_{x}(0,0)=0 \\ \rightarrow f_{y}=2(9 x+8 y) 8 \\ \Rightarrow f_{y}(0,0)=0 \\ \rightarrow f_{x x}=(9)(9)(2)=162 \\ \rightarrow f_{y y}=64(2)=168 \\ f_{x y}=8(2)(9)=144\end{array}A2, \begin{aligned} f(\lim )= & 0+0(x-0)+0(y-0)+ \\ & \frac{162}{2}(x-0)^{2}+\frac{128(y-0)^{2}}{2}+144(x-0)(y-0) \\ \Rightarrow f(1, m)= & 81 x^{2}+64 y^{2}+144 x y\end{aligned} PLZZ like if satisfied ...