Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
hope this helps.  \text { sol } \Longrightarrow k \sum_{10 \mathrm{~kg}}^{\sum_{i=1}^{<-1} c=5}given, by 2 \mathrm{~N} force, the mans extend by 1 \mathrm{~m}.\begin{aligned}\therefore \quad & 2=k \times 1 \\& \Rightarrow k=2 . \mathrm{N} / \mathrm{m}\end{aligned}nov, let the bleck diplaced little. bit from its natural position.\therefore we con write,\begin{array}{l}k x+c \dot{x}=-m \ddot{x} \\\Rightarrow m \ddot{x}+c \dot{x}+k x=0 \\\Rightarrow 10 \ddot{x}+5 \dot{x}+2 x=0 \text {. } \\\text { its auxilary equ } \rightarrow 10 m^{2}+5 m+2=0 \\\Rightarrow m=\frac{-5 \pm \sqrt{25-80}}{20} \\\Rightarrow m=\frac{-5 \pm i 7.4162}{20} \\\Rightarrow m=-0.25 \pm i 0.3708 \\\therefore x=e^{-0.25 t}\left(c_{1} \cos (0.3708 t)+c_{2} \sin (0.3708 t)\right) \\\end{array}now, given condition, at t=0, x=2 metres.\therefore 2=c_{1}andt at t=0, \dot{x}=\frac{d x}{d t}=0 \begin{array}{l} \therefore \frac{d x}{d t}=e^{a t}\left(-A C_{1} \sin (A t)+A C_{2} \cos (A t)+a c_{1} \cos (A t)\right. \\\left.+a C_{2} \sin (A t)\right)\end{array}Here, for simplification, we used,\begin{array}{l}a=-0.25 \\A=0.3708\end{array}now, appling the condition, at t=0, \frac{d x}{d t}=0\begin{aligned}0 & =A C_{2}+a c_{1} \\& \Rightarrow c_{2}=-\frac{a c_{1}}{A}=-\frac{-0.25 \times 2}{0.3708}=1.3484\end{aligned}\therefore Sy becomesx=2 e^{-0.25 t} \cos (0.3708 t)+1.3484 e^{-0.25 t} \sin (0.3708 t)Comparimg we get\begin{array}{l}\alpha=-0.25 \\\beta=0.3708 \\\gamma=-0.25 \\\delta=0.3708 \\c_{1}=2 \\c_{2}=1.3484\end{array} ...