Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
I have shown detailed solution below-Sol :-Given:-s^{\prime \prime}+b s^{\prime}+3 s=0solution of equation (1) will consist only complementary Function (C.F) part as particular Inte \operatorname{gral}(P \cdot I)=0solution for C.F\begin{aligned}& \alpha^{2}+b \alpha+3=0 \\\therefore \alpha & =\frac{-b \pm \sqrt{b^{2}-(4 \times 1 \times 3)}}{2 \times 1} \\& =\frac{-b \pm \sqrt{b^{2}-12}}{2}\end{aligned}\left[\begin{array}{c}\text { where, } \alpha=\alpha_{1}, \alpha_{2} \\\text { are two roots }\end{array}\right]\rightarrow When the equation is overdamped, value of \left(b^{2}-12\right) must be greater than zero.i.e b^{2}>12or, b>2 \sqrt{3} \quad \therefore 2 \sqrt{3}<b \leq \infty.Therefore, b \in(2 \sqrt{3}, \infty)Ans (1)\rightarrow When the equation is underdamped, value of \left(b^{2}-12\right) must be less than zero.\text { i.e } b^{2}-12<0or, b<2 \sqrt{3}\begin{array}{l}=\frac{\text { co-efficient of } s}{2 \sqrt{(\text { corefticient of } s) \times\left(\text { co-efficient of } s^{\prime \prime}\right)}} \\=\frac{b}{2 \sqrt{1 \times 3}}=\frac{b}{2 \sqrt{3}}\end{array}Therefore, b should be greater than zero becausc if b=0 then S=0 i-e no damping.So, if the equation is underdampedb \in(0,2 \sqrt{3})Ans (2),\rightarrow For Critically damped\begin{array}{c}b^{2}-12=0 \\\text { or, } b=2 \sqrt{3}\end{array}Also, we can say for critically damped\left\{=1=\frac{b}{2 \sqrt{3}}\right.1 \text { or, } b=2 \sqrt{3}Therefore, if the equation is critically dampedb \in(2 \sqrt{3}, 2 \sqrt{3})Ans. (3) ...