10. An open channel has a bottom width of 4.5m. The velocity of flow is 1.2 m/s. Determine the discharge in cubic meters per second under the following conditions:
a. Most efficient trapezoidal section.
b. Trapezoidal section with one side vertical and the other sloping 45 degrees and depth of flow of 2/3 the base width.
c. Minimum seepage with side slope of 65 degrees.
Show complete solution.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
(a) Most efficiest \left\{R=\frac{y}{2}\right\}\begin{array}{l} V=\frac{1}{h} R^{\frac{2}{3}} s^{1 / 2} \\1.2=0.015\left(\frac{y}{2}\right)^{2 / 3} \sqrt{0.0015} \\y=0.633 \mathrm{~m} \quad A=\sqrt{3} y^{2} \\\theta=A V=\sqrt{3} \times y^{2} \times y .2 \\\theta=0.832 \mathrm{~m}^{3} / \mathrm{s}\end{array}\begin{array}{l}\text { (B) } \quad V=1.2 \mathrm{~m} / \mathrm{s} \quad n=0.015 \quad S=0.0015 \quad B=4.5 \\\begin{array}{ll}\underbrace{\cdots}_{+-4.5 \rightarrow 0} & v=\frac{1}{h} R^{2 / 3} s^{1 / 2} \\y_{f} & 1.2=\frac{1}{0.015}\left(\frac{A}{P}\right)^{2 / 3} \sqrt{0.0015}\end{array} \\A=4.5 y+\left(\frac{y}{2} \times y\right) \\\left(\frac{A}{P}\right)^{2 / 3}=0.464 \\A=4 \cdot 5 y+\frac{y^{2}}{2} \\A=0.3168 \mathrm{P} \\p=y+4 \cdot 5+y \sqrt{2} \\p=2.414 y+4.5 \\4.5 y+0.5 y^{2}=0.3168(2.414 y+4.5) \\0.5 y^{2}+3.735 y-7.4256=0 \\y=0.36 \mathrm{~m} \\\theta=A V=\left(4.5 y+0.5 y^{2}\right) \times 1.2=2.02 \mathrm{~m}^{3} / \mathrm{s} \\\end{array}Now(C)\begin{array}{l} A=(B+m y) y \\=(4.5+0.466 \times 2.25) \times 2.25 \\A=12.48 \mathrm{~h}^{2} \\P=B+2 y \sqrt{1+\mathrm{m}^{2}} \\=4.5+4.5 .5 \sqrt{1+0.466^{2}} \\P=9.46 \mathrm{~m} \\\therefore \quad R=\frac{A}{P}=1.318 \quad V=1.2 \mathrm{~L} / \mathrm{s} \\\theta \quad A V=12.48 \times 1.2=14.976 \mathrm{~m}^{3} / \mathrm{s}\end{array}I Hope this answer will be helpful to you.Please like this answer don't give dislike.Thank you. ...