Can I get help with these 3 linear Algebra questions?
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
1) Given expression is = (A+I)(A2+A)                                         = A(A2+A)+I(A2+A)                                         = A3+A2+A2+A                                         = A3+2A2+A 2) The given matrix equation (A+B)2 = A2+2AB+B2 is false in general because : (A+B)2 = A2+AB+BA+B2. This is only equal to A2+2AB+B2 when AB = BA, which in general is not true. Here, A = \left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] and B = \left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right] Now, AB = \left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right] = \left[\begin{array}{ll}13 & 16 \\ 29 & 36\end{array}\right] and BA = \left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] = \left[\begin{array}{ll}15 & 22 \\ 23 & 34\end{array}\right] Since \left[\begin{array}{ll}13 & 16 \\ 29 & 36\end{array}\right] 7 \left[\begin{array}{ll}15 & 22 \\ 23 & 34\end{array}\right], then AB 7 BA. 3) Given expression is = (A+B)(A2-AB+B2)                                         = A(A2-AB+B2)+B(A2-AB+B2)                                         = A3-A2B+AB2+BA2-BAB+B3 The given equation is false because A2B 7 BA2 and AB2 7 BAB. Here, A = \left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] and B = \left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right] Now, A2B = \left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right] = \left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}13 & 16 \\ 29 & 36\end{array}\right] = \left[\begin{array}{cc}71 & 88 \\ 155 & 192\end{array}\right] And, BA2 = \left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] = \left[\begin{array}{ll}15 & 22 \\ 23 & 34\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] = \left[\begin{array}{cc}81 & 118 \\ 125 & 182\end{array}\right] And, AB2 = AB*B = \left[\begin{array}{ll}13 & 16 \\ 29 & 36\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right] = \left[\begin{array}{ll}119 & 148 \\ 267 & 332\end{array}\right] And, BAB = \left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{ll}13 & 16 \\ 29 & 36\end{array}\right] = \left[\begin{array}{ll}155 & 192 \\ 239 & 296\end{array}\right] Therefore, A2B 7 BA2 and AB2 7 BAB. ...