Question Solved1 Answer Determine the absolute extrema of the function f(x)=(x-3)e^x on the interval 14. Determine the absolute extrema of the function f(x) = (x- 3)e* on the interval -1 SA $ 3. [4 Marks ) %3D

K64ALA The Asker · Calculus
Determine the absolute extrema of the function f(x)=(x-3)e^x on the interval
Transcribed Image Text: 14. Determine the absolute extrema of the function f(x) = (x- 3)e* on the interval -1 SA $ 3. [4 Marks ) %3D
More
Transcribed Image Text: 14. Determine the absolute extrema of the function f(x) = (x- 3)e* on the interval -1 SA $ 3. [4 Marks ) %3D
See Answer
Add Answer +20 Points
Community Answer
VDEB47 The First Answerer
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration

Given function isf(x)=(x-3)e^(x)quad,-1 <= x <= 3Differentiating with respect to ' x ', we have{:[f^(')(x)=(x-3)e^(x)+1xxe^(x)],[" or, "f^(')(x)=(x-2)e^(x)]:}For eritical points, we have{:[f^(')(x)=0],[=>(x-2)e^(x)=0],[=>x-2=0quad[:'e^(x)!=0" in "-1 <= x <= 3]],[=>x=2.]:}:. The critical point of the function f(x) is x=2To kind the aboulute extr ... See the full answer