Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
from the given information,(1) a_{m}=g_{m} and Rout is given by\text { Rout }=\left[\left(R_{p} \| \gamma_{2}\right)+\left(1+g_{m_{2}}\left(R_{p} \| \gamma_{O_{2}}\right) \gamma_{0}\right] \|\left[\gamma_{04}\left(1+g_{m_{3}}^{\gamma_{0}}+\gamma_{3}\right]\right.\right.Hen, as we knowe that, A_{v}=-G m Rout. Then,\text { - } A v=-g_{m_{1}}\left[\left(C R \cdot 11 \gamma_{O_{2}}\right)+\left(1+g_{m}\left(R_{p} \| \gamma_{2}\right)\right) \gamma_{1}\right] \|\left[\gamma_{\alpha_{1}}\left(1+g_{m_{3}}^{25 \gamma_{1}}\right)\right](b) From the given information, G_{m_{1}}=g_{m_{1}} \times\left(\frac{R p l l r_{01}}{\gamma_{1} \| R_{p}+\left(\frac{1}{g_{m_{2}}}\right)}\right) Then, from the given circuit,\begin{array}{l}\left.\left[\gamma_{04}\left(1+g_{m_{3}} \gamma_{3}\right)+\gamma_{3}\right]\right] \\\end{array}C) And, G_{m}=g_{\mathrm{ms}}. from the circuit,\begin{array}{l}\text { Rout }=\left[\left(1+g_{m_{2}} \gamma_{O_{2}}\right)\left(\gamma_{01} 11 r_{0}\right)+\gamma_{0}\right] \|\left[\left(1+g_{m_{3}} \gamma_{0_{3}}\right) \gamma_{0}+\gamma_{0_{3}}\right] \\\text { then } A_{V}=-g_{m s}\left\{\left(1+g_{m_{2}} \gamma_{2}\right)\left(\gamma_{0} \| \gamma_{05}\right)+\gamma_{0_{2}}\right] \|\left[\left(1+g_{m_{3}} \gamma_{0}\right) \gamma_{0}+\gamma_{3}\right]\end{array}(d) a_{m}= arms from the circuit _{\text {(d) }}\begin{array}{l}\text { Rout }=\left[\left(1+g_{m_{2}} \gamma_{2}+\gamma_{0_{2}}\right] \|\left[\left(\gamma_{1} \| r_{o_{4}}\right)\left(1+g_{m_{3}} \gamma_{O_{3}}\right)+\gamma_{O_{3}}\right]\right. \\\text { Then }\end{array}ThenA_{v}=-g_{m s}\left[\left[\left(1+g m_{2} \gamma_{2}\right) \gamma_{0}+\gamma_{2}\right] /\left[\left(r_{0}\left(1 r_{04}\right)\left(1+g_{m_{3}} \gamma_{0_{3}}\right)+\gamma_{0_{3}}\right]\right\}\right. ...