Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

from the given information,(1) a_{m}=g_{m} and Rout is given by\text { Rout }=\left[\left(R_{p} \| \gamma_{2}\right)+\left(1+g_{m_{2}}\left(R_{p} \| \gamma_{O_{2}}\right) \gamma_{0}\right] \|\left[\gamma_{04}\left(1+g_{m_{3}}^{\gamma_{0}}+\gamma_{3}\right]\right.\right.Hen, as we knowe that, A_{v}=-G m Rout. Then,\text { - } A v=-g_{m_{1}}\left[\left(C R \cdot 11 \gamma_{O_{2}}\right)+\left(1+g_{m}\left(R_{p} \| \gamma_{2}\right)\right) \gamma_{1}\right] \|\left[\gamma_{\alpha_{1}}\left(1+g_{m_{3}}^{25 \gamma_{1}}\right)\right](b) From the given information, G_{m_{1}}=g_{m_{1}} \times\left(\frac{R p l l r_{01}}{\gamma_{1} \| R_{p}+\left(\frac{1}{g_{m_{2}}}\right)}\right) Then, from the given circuit,\begin{array}{l}\left.\left[\gamma_{04}\left(1+g_{m_{3}} \gamma_{3}\right)+\gamma_{3}\right]\right] \\\end{array}C) And, G_{m}=g_{\mathrm{ms}}. from the circuit,\begin{array}{l}\text { Rout }=\left[\left(1+g_{m_{2}} \gamma_{O_{2}}\right)\left(\gamma_{01} 11 r_{0}\right)+\gamma_{0}\right] \|\left[\left(1+g_{m_{3}} \gamma_{0_{3}}\right) \gamma_{0}+\gamma_{0_{3}}\right] \\\text { then } A_{V}=-g_{m s}\left\{\left(1+g_{m_{2}} \gamma_{2}\right)\left(\gamma_{0} \| \gamma_{05}\right)+\gamma_{0_{2}}\right] \|\left[\left(1+g_{m_{3}} \gamma_{0}\right) \gamma_{0}+\gamma_{3}\right]\end{array}(d) a_{m}= arms from the circuit _{\text {(d) }}\begin{array}{l}\text { Rout }=\left[\left(1+g_{m_{2}} \gamma_{2}+\gamma_{0_{2}}\right] \|\left[\left(\gamma_{1} \| r_{o_{4}}\right)\left(1+g_{m_{3}} \gamma_{O_{3}}\right)+\gamma_{O_{3}}\right]\right. \\\text { Then }\end{array}ThenA_{v}=-g_{m s}\left[\left[\left(1+g m_{2} \gamma_{2}\right) \gamma_{0}+\gamma_{2}\right] /\left[\left(r_{0}\left(1 r_{04}\right)\left(1+g_{m_{3}} \gamma_{0_{3}}\right)+\gamma_{0_{3}}\right]\right\}\right. ...