Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
from the condition of equillibrium,\begin{aligned}& m_{A} g=K_{1} \delta_{A}+k_{2}\left(\delta_{A}-\delta_{B}\right) \\\Rightarrow & (40 \times 9.81)=\delta_{A}\left(10^{5}+1.2 \times 10^{5}\right)-K_{2} \delta_{B}\end{aligned}\begin{array}{l}\Rightarrow 40 \times 9.81=\delta_{A}\left(2.2 \times 10^{5}\right)-1.2 \times 10^{5} \times \delta_{B} \\ \Rightarrow 0.00392=2.2 \delta_{A}-1.2 \delta_{B}-(i)\end{array}from F \cdot B \cdot D of " m_{B} "from equillibuium,\begin{aligned}K_{2}\left(\delta_{B}-\delta_{A}\right) & =m_{B} g+K_{3} \delta_{B} \\\Rightarrow 65 \times 9.81 & =\delta_{B}\left(K_{2}-K_{3}\right)-K_{2} \delta_{A} \\& =\delta_{B}\left(1.2 \times 10^{5}-1.4 \times 10^{5}\right)-1.2 \times 10^{5} \times \delta_{A} \\\Rightarrow 65 \times 9.81 & =-0.2 \times 10^{5} \delta_{B}-1.2 \times 10^{5} \delta_{A} \\\Rightarrow-0.00637 & =0.2 \delta_{B}+1.2 \delta_{A}-\text { (ii) }\end{aligned}By solving equation - (iv and (ii)\begin{array}{l}\delta_{A}=4 \mathrm{~mm} \\\delta_{B}=10 \mathrm{~mm}\end{array}Now force supported by(i) Spring 1F_{1}=K_{1} \delta_{A}=100 \times 4=400 \mathrm{~N}(ii) Spring 2F_{2}=\left(\delta_{B}-\delta_{A}\right) K_{2}=(10-4) \times 120=720 \mathrm{~N}(iii) spring 3F_{3}=K_{3}\left(\delta_{B}\right)=140 \times 10=1400 \mathrm{~N} ...