Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Step1/4a) we have to find inverse laplce transform of \({1/s^2-3/s+1/(s+2)}\)\(L^-1{1/s^2-3/s+1/(s+2)}=L^{-1}\{\frac{1}{s^2}\}-L^{-1}\{\frac{3}{s}\}+L^{-1}\{\frac{1}{s+2}\}\)\(=t-3\text{H}\(t\)+e^{-2t}\)Step2/4b) we have to find laplace transform of \({1/(4s^2+1)}\)\(L^-1{1/(4s^2+1)}=\frac{1}{2}L^{-1}\{\frac{\frac{1}{2}}{s^2+\(\frac{1}{2}\)^2}\}\)\(=\frac{1}{2}\sin \(\frac{t}{2}\)\)Step3/4c) we have to find inverse laplace transform of \({(2/s+1/s^3)^2}\)\(L^-1{(2/s+1/s^3)^2}=L^{-1}\{\frac{4}{s^2}+\frac{4}{s^4}+\frac{1}{s^6}\}\)\(=L^{-1}\{\frac{4}{s^2}\}+L^{-1}\{\frac{4}{s^4}\}+L^{-1}\{\frac{1}{s^6}\}\)\(=4t+\frac{2t^3}{3}+\frac{t^5}{120}\)Step4/4d) we have to find laplace transform of \(1/(s(s-1)(s^2+6s+13))\)\(L^-1{1/(s(s-1)(s^2+6s+13))}= L^{-1}\{-\frac{1}{13s}+\frac{1}{20\(s-1\)}+\frac{7s+29}{260\(s^2+6s+13\)}\}\)\(=-L^{-1}\{\frac{1}{13s}\}+L^{-1}\{\frac{1}{20\(s-1\)}\}+\frac{7}{260}L^{-1}\{\frac{s+3}{\(s+3\)^2+4}\}+\frac{2}{65}L^{-1}\{\frac{1}{\(s+3\)^2+4}\}\)\(=-\frac{1}{13}\text{H}\(t\)+\frac{1}{20}e^t+\frac{7}{260}e^{-3t}\cos \(2t\)+\frac{2}{65}e^{-3t}\frac{1}{2}\sin \(2t\)\)e) \(L^-1{s/((s+3)(s^2+4))}=L^{-1}\{\frac{3s}{13\(s^2+4\)}+\frac{4}{13\(s^2+4\)}-\frac{3}{13\(s+3\)}\}\)\(=-\frac{3}{13}L^{-1}\{\frac{1}{s+3}\}+\frac{3}{13}L^{-1}\{\frac{s}{s^2+4}\}+\frac{4}{13}L^{-1}\{\frac{1}{s^2+4}\}\)\(=-\frac{3}{13}e^{-3t}+\frac{3}{13}\cos \(2t\)+\frac{4}{13}\cdot \frac{1}{2}\sin \(2t\)\)\(f)L^-1{(s+1)/(s^2-4s)}=L^{-1}\{-\frac{1}{4s}+\frac{5}{4\(s-4\)}\}\)\(=-\frac{1}{4}\text{H}\(t\)+\frac{5}{4}e^{4t}\)Explanation:The answer of question is shown in above steps ...