Question 2. Suppose that nine observations are selected at random from the normal distribution with unknown mean \( \mu \) and unknown variance \( \sigma^{2} \), and for these nine observations it is found that \( \bar{X}_{n}=22 \) and \( \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=72 \).a. Carry out a test of the following hypotheses at the level of significance \( 0.05 \) :\[\begin{array}{ll}H_{0}: & \mu \leq 20 . \\H_{1}: & \mu \leq 20 .\end{array}\]b. Carry out a test of the following hypotheses at the level of significance \( 0.05 \) by using the two-sided \( t \) test:\[\begin{array}{ll}H_{0}: & \mu=20, \\H_{1}: & \mu \neq 20 .\end{array}\]c. From the data, construct the observed confidence interval for \( \mu \) with confidence coefficient \( 0.95 . \)

JH1UIC The Asker · Probability and Statistics
2. Suppose that nine observations are selected at random from the normal distribution with unknown mean \( \mu \) and unknown variance \( \sigma^{2} \), and for these nine observations it is found that \( \bar{X}_{n}=22 \) and \( \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=72 \).
a. Carry out a test of the following hypotheses at the level of significance \( 0.05 \) :
\[
\begin{array}{ll}
H_{0}: & \mu \leq 20 . \\
H_{1}: & \mu \leq 20 .
\end{array}
\]
b. Carry out a test of the following hypotheses at the level of significance \( 0.05 \) by using the two-sided \( t \) test:
\[
\begin{array}{ll}
H_{0}: & \mu=20, \\
H_{1}: & \mu \neq 20 .
\end{array}
\]
c. From the data, construct the observed confidence interval for \( \mu \) with confidence coefficient \( 0.95 . \)
Transcribed Image Text: 2. Suppose that nine observations are selected at random from the normal distribution with unknown mean \( \mu \) and unknown variance \( \sigma^{2} \), and for these nine observations it is found that \( \bar{X}_{n}=22 \) and \( \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=72 \). a. Carry out a test of the following hypotheses at the level of significance \( 0.05 \) : \[ \begin{array}{ll} H_{0}: & \mu \leq 20 . \\ H_{1}: & \mu \leq 20 . \end{array} \] b. Carry out a test of the following hypotheses at the level of significance \( 0.05 \) by using the two-sided \( t \) test: \[ \begin{array}{ll} H_{0}: & \mu=20, \\ H_{1}: & \mu \neq 20 . \end{array} \] c. From the data, construct the observed confidence interval for \( \mu \) with confidence coefficient \( 0.95 . \)
More
Transcribed Image Text: 2. Suppose that nine observations are selected at random from the normal distribution with unknown mean \( \mu \) and unknown variance \( \sigma^{2} \), and for these nine observations it is found that \( \bar{X}_{n}=22 \) and \( \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=72 \). a. Carry out a test of the following hypotheses at the level of significance \( 0.05 \) : \[ \begin{array}{ll} H_{0}: & \mu \leq 20 . \\ H_{1}: & \mu \leq 20 . \end{array} \] b. Carry out a test of the following hypotheses at the level of significance \( 0.05 \) by using the two-sided \( t \) test: \[ \begin{array}{ll} H_{0}: & \mu=20, \\ H_{1}: & \mu \neq 20 . \end{array} \] c. From the data, construct the observed confidence interval for \( \mu \) with confidence coefficient \( 0.95 . \)