Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
The figure shows traffic entoring and exiting a road system (the units are vehides perhour)Equations:At node A: \quad x_{1}+x_{2}=200At node B : x_{1}=x_{3}+x_{4}At nodo E: \quad x_{2}+x_{3}=x_{5}At node D : x_{4}+x_{5}=200\begin{aligned}\text { Total time } & =k x_{1}+2 k x_{2}+k x_{3}+2 k x_{4}+k x_{5} \\& =k\left[x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5}\right] \\& =k\left[\left(x_{1}+x_{2}\right)+\left(x_{2}+x_{3}\right)+2 x_{4}+x_{5}\right] \\& =k\left[\left(x_{1}+x_{2}\right)+x_{5}+2 x_{4}+x_{5}\right]\left\{\left(x_{2}+x_{3}=x_{5}\right)\right\} \\& =k\left[\left(x_{1}+x_{2}\right)+2 x_{4}+2 k_{5}\right] \\& =k\left[\left(x_{1}+x_{2}\right)+2\left(x_{4}+x_{5}\right)\right] \\& =k[200+2(200)]=600 k\end{aligned}If k=4, Then total time =600(4)=2400 minutesHonce Total time =2400 minutes or 40 hours.\begin{aligned}\text { Average timo for each car } & =\frac{\text { Tutal time }}{\text { numberof cars }} \\& =\frac{2400}{200}=12 \text { minutes }\end{aligned}Arerage time for each car =12 minutes ...