Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
given data:-P=4 lap coound short shunt wmulative compound\begin{array}{l}r_{a}=0.02 \Omega \quad r_{f}=0.04 \Omega \quad R_{s h}=10 \Omega \\z=120 \text { conductors } \quad N=1000 \mathrm{rpm}\end{array}(i) 7.2 \mathrm{~kW} motor & 2.4 \mathrm{kr} geyser connected in parallel(ii) 1.8 \mathrm{~kW} lighting loads in series with parallel lombination (i)(iii) motor draws current =30 \mathrm{~A}solution:-since the motor & geyser connected in parallel both having same roltage somotor voltase V=\frac{P}{I}=\frac{7.2 \mathrm{~kW}}{30 \mathrm{~A}}=240 \mathrm{~V}V=240 \mathrm{~V} \rightarrow so voltage across geyser is also samecurrent flow in geyser Igey =\frac{P_{g y}}{Y}=\frac{2.4 \times 10^{3}}{240}=10 \mathrm{~A}I_{I}=30 A+10 A=40 A \quad I L=40 AVoltage drop alross the series connected coad\begin{array}{l}v_{\text {series }}=\frac{P_{L}}{I L}=\frac{18 \times 10^{3}}{I_{L}=40}=45 \mathrm{~V} \\\text { series }=45 \mathrm{~V}\end{array}The voltage drop across the seves field winding\begin{aligned}V_{S f}=I_{l} R_{f} & =40 \times 0.04=1.6 \\V_{S f} & =16 V\end{aligned}voltage drop across the armsture\begin{aligned}\left(V_{a}\right) & =V_{\text {gey }}+V_{\text {series }}+V_{s f} \\& =240 v+45 v+1.6 v \\V_{a} & =286.60 v\end{aligned}The current flow in shunt field winding Ishunt =\frac{Y_{a}}{R \text { shunt }}I_{\text {shunt }}=\frac{286.60}{10}=28.66 \mathrm{~A}So total armature current \sqrt{I_{a}}=I L+I Ishunt\text { IQ=8.66A }=40+28.66=6866 \mathrm{~A}a) ar mature induced vortage F a=Y a+I a r a\begin{array}{l}E_{a}=286.6+68.66 \times 0.02=287.97 \\E_{a}=287.97 \mathrm{~V}\end{array}(b)\begin{array}{l}\text { flux/pole }(\phi)=\frac{60 A E a}{P N z} \\\phi=\frac{60 \times 4 \times 287.97}{4 \times 1000 \times 120}=0.143 \mathrm{wb} \phi=0.143 \text { weter }\end{array}(c)\begin{array}{l}\text { Eftrieny }=\frac{\text { power detivexed }}{\text { power supplied }} \times 100=\frac{(7.2 \mathrm{kw}+2.4 \mathrm{~km}+1.8 \mathrm{kw})}{E_{a} \times \text { Ia }^{2}} \\=\frac{11.4 \times 10^{3}}{287.97 \times 6866} \times 100=57.65 \% \\\end{array}(d) yoltage drop across the l19nting loid\begin{array}{l}P=V_{i} \times I_{\text {line }} \Rightarrow V_{\text {lignting }}=\frac{P}{\text { line current }}=\frac{1.8 \mathrm{~kW}}{40 \mathrm{~A}}=45 \mathrm{~V} \\V=45 \mathrm{~V}\end{array} ...