Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Soln 0^{-}\begin{array}{l}\left(x_{1}, y_{1}, z, 1\right)=(0,3,5) \\(x, y, y, z, z)=(7,1,3) \\D(7,1,3) \begin{array}{l}A, 3,5) \\\left(x_{2}, y_{2}, 2,2\right)=(-3,-1,17) \\C\left(x_{3}, y_{3}, 23\right)=(4,-3,15)\end{array} \\A B=d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\=\sqrt{(-3-0)^{2}+(-1-3)^{2}+(17-5)^{2}} \\=\sqrt{9+16+144} \text { व }=\sqrt{169}\end{array}\therefore A B=13\begin{aligned}B C & =\sqrt{\left(x_{3}-x_{2}\right)^{2}+\left(y_{3}-y_{2}\right)^{2}+\left(z_{3}-z_{2}\right)^{2}} \\& =\sqrt{(4+3)^{2}+(-3+1)^{2}+(15-17)^{2}} \\& \Rightarrow \sqrt{49+4+4}=\sqrt{57}\end{aligned}\therefore \quad B C=\sqrt{57}\begin{aligned}C D & =\sqrt{\left(x_{4}-x_{3}\right)^{2}+\left(y 4-y_{3}\right)^{2}+\left(z_{4}-z_{3}\right)^{2}} \\& =\sqrt{(7-4)^{2}+(1+3)^{2}+(3-15)^{2}} \\& =\sqrt{9+16+144}=\sqrt{169}=13 \\\therefore C D & =13\end{aligned}\begin{aligned}D A & =\sqrt{\left(x_{1}-x_{4}\right)^{2}+\left(y_{1}-y_{4}\right)^{2}+\left(z_{1}-z_{4}\right)^{2}} \\& \Rightarrow \sqrt{(0-7)^{2}+(3-1)^{2}+(5-3)^{2}} \\& \Rightarrow \sqrt{49+4+4} \Rightarrow \sqrt{57}\end{aligned}Thus, oppasite sides of quadrilateral are equalA B=C D \text { \& } B C=D AWe know that, in case of parallelogram appasite sides are equal & diagonals bisects each otheer.\text { midpoint of } \begin{aligned}A C & =\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}, \frac{z_{1}+z_{3}}{2}\right) \\& =\left(\frac{0+4}{2}, \frac{3-3}{2}, \frac{5+15}{2}\right) \\& =(2,0,10)\end{aligned}\text { Midpoint of } \begin{aligned}B D & =\left(\frac{x_{2}+x_{4}}{2}, \frac{y_{2}+y_{4}}{2}, \frac{z_{2}+z_{4}}{2}\right) \\& =\left(\frac{-3+7}{2}, \frac{-1+1}{2}, \frac{17+3}{2}\right) \\& =(2,0,10)\end{aligned}midpoint of A C= midpoint of B D\therefore oppasite sides are equel & diagonal bisect each othee. So we can say that A B C D is a parall elogram ...