Solution 2.11Let T=T(y) only." Po "_(0)uarr_(y)^(4)p_(0)_(T=T_(1))rarru_(1)quad∼((u_(1))/(H))^(2)uarrgoverning difberential Equation{:[0=-(dP)/(dx)+mu(d^(2)u^(0))/(dy^(2))=>(dP)/(dx)=mu(d^(2)u)/(dy^(2))=c],[c=(-P_(x=L)-P_(0)-P_(x=0)P_(0))/(L)=0=>(d^(2)u)/(dy^(2))=0;(du)/(dy)=c_(1)],[u=c","y+c_(2)]:}Boundary conditinis (I) At y=0,u=0=>C_(2)=0 (II) At y=H,u=u_(1)=>U_(1)=C_(1)H=>C_(1)=(u_(1))/(H).u=u_(1)(y)/(H)=>(du)/(dy)=(u_(1))/(H)-(1)" rate of deforimation "Now,Energy Equation:-{:[quad=rhoC_(p)[(dT)/(d*t)+u(dT)/(dx)+v(dT)/(dy)]=k((d^(2)T)/(dx^(2))+(d ... See the full answer