determine the transfer function of the system described by the state-space representation shown below
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
State space representation to transfer function \RightarrowState space form, and order is n\begin{array}{l}\dot{x}=A x+B U \\y=C x+D U\end{array}Here A - system metrix ( n \times n )B - imput matrix (n \times m)C - output matrix (PXh)D - Feed back or foruard matrix (P \times m)taking laplace transform of equation(i), (ii)\begin{aligned}s X(s)-X(0) & =A X(s)+B U(s) \\Y(s) & =C X(s)+D U(s)\end{aligned}taking zero initial condition x(0)=0\begin{array}{l}S X(s)=A X(s)+B U(s) \ldots \text { (iii) } \\y(s)=c X(s)+D U(s) \ldots \text { (iv) }\end{array}transfor function H(s)=\frac{Y(S)}{V(S)}=\frac{\text { output }}{\text { inpeut }}we noed to find y(s) and v(s), so need to romove Qr x(s) from (iv) o (i), (ii), (iii), (iv)from equation ( iii)\begin{array}{l}S \times(S)-A X(S)=B U(s) \quad \text { [Here I indentity } \\(S I-A) X(S)=B U(S)\end{array}muliplying both side by (S I-A)^{-1}X(s)=(S I-A)^{-1} B U(s)Let say Q(S)=(S I-A)^{-1}X(s)=\phi(s) B U(s)put in equation (iv)\begin{array}{l}y(s)=C \phi(s) B U(s)+D U(s) \\y(s)=[c \phi(s) B+D] U(s)\end{array}H(s)=\frac{Y(s)}{u(s)}=C \Phi(s) B+DHere \phi(S)=(S I-A)^{-1}, and I is inelentity matrieSolution \Rightarrowgiven state space form\begin{array}{l}\dot{x}=\left[\begin{array}{cc}-5 & -1 \\3 & -1\end{array}\right] x+\left[\begin{array}{l}2 \\5\end{array}\right] u \\y=\left[\begin{array}{ll}1 & 2\end{array}\right] x\end{array}Here\begin{array}{l}A=\left[\begin{array}{rr}-5 & -1 \\3 & -1\end{array}\right]_{2 \times 2}, B=\left[\begin{array}{l}2 \\5\end{array}\right]_{2 \times 1} \\C=[1,2]_{1 \times 2}, D=[0]\end{array}First find \phi(s)=(s I-A)^{-1}dimension of I is same as A, so 2 \times 2\begin{array}{l}I=\left[\begin{array}{ll}1 & 0 \\0 & 1\end{array}\right], \quad S I=\left[\begin{array}{ll}S & 0 \\0 & S\end{array}\right] \\S I-A=\left[\begin{array}{ll}5 & 0 \\0 & S\end{array}\right]-\left[\begin{array}{cc}-5 & -1 \\3 & -1\end{array}\right] \\S I-A=\left[\begin{array}{cc}S+5 & +1 \\-3 & S+1\end{array}\right]\end{array}determinant of S I-A or |S I-A|\begin{array}{l}\phi(s) \\\end{array}Nou premultuplying by matrix C and post multiplying by matrix B\begin{array}{l}\left.c \phi(s)=\frac{1}{[(s+1)(s+5)+3}\right] \cdot[1,2]\left[\begin{array}{cc}s+1 & -1 \\3 & s+5\end{array}\right] \\=\frac{1}{[(s+1)(s+5)+3]} \cdot[s+1+6 \quad-1+2 s+10] \\\end{array}\begin{array}{l}=\frac{1}{[(s+1)(s+5)+3]} \cdot[(s+7) 2+(2 s+9) 5] \\c \phi(s) B=\frac{2 s+14+10 s+45}{(s+1)(s+5)+3}=\frac{12 s+59}{(s+1)(s+5)+3} \\H(s)=\text { transferfunction }=C \phi(s) B+D \\H(s)=\frac{12 s+59}{(s+1)(s+5)+3}+0 \\\end{array}Ans - state space form \dot{x}=\left[\begin{array}{c}-5-1 \\ 3-1\end{array}\right] x+\left[\begin{array}{l}2 \\ 5\end{array}\right] xy=\left[\begin{array}{ll}1 & 2\end{array}\right] xtransfer function =\frac{12 S+59}{(s+1)(s+5)+3} ...