power system

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

(2) Given question\begin{aligned}\left.\Rightarrow G_{M P}\right|_{a k a^{\prime}} & =(8 \times 18 \times 32 \times 40)^{1 / 4} \\\left.G_{M P}\right|_{b 4 b^{\prime}} & =(8 \times 8 \times 16 \times 32)^{1 / 4} \\\left.G_{M D}\right|_{C 4 C^{\prime}} & =(8 \times 16 \times 8 \times 16)^{1 / 4} \\G m D_{\text {Total }} & =\left(G M D_{a} \cdot 40 \mathrm{GmD} \cdot G m D_{c} \cdot G m D_{a^{\prime}} \cdot G m D_{b^{\prime}} \cdot G m D_{c^{\prime}}\right)^{1 / 6} \\& =\left((8 \times 16 \times 32 \times 40)^{1 / 2} \cdot(8 \times 8 \times 16 \times 32)^{1 / 2} \cdot(8 \times 16 \times 8 \times 16)^{1 / 2}\right)^{1 / 6} \\G m D_{\text {Todal }} & =14 \cdot 52 \mathrm{mtr} .\end{aligned}\left.\Rightarrow \operatorname{GiR}\right|_{a, a, b, b, 0,0}=\left(\gamma^{\prime} \times 24\right)^{1 / 2}\left.G m R\right|_{b 4 b^{\prime}}\left(\gamma^{\prime} \times 24\right)^{1 / 2},\left.G m R\right|_{C 4 c^{\prime}}=\left(x^{\prime} \times 24\right)^{1 / 2}\begin{aligned}\operatorname{Gim}_{\text {total }} & =\left[\operatorname{Gir}_{2}\left(a<a^{\prime}, b, b^{\prime}, c, c^{\prime}\right)\right]^{1 / 6} \\& =\left(\gamma^{\prime} \times 24\right)^{1 / 2} \\& =\left(0.7788 \times 5.3 \times 10^{-2} \times 24\right)^{1 / 2}\end{aligned}Inductance L=2 \times 10^{-7} \ln \frac{G m P}{G m R} \mathrm{H} / \mathrm{m} / \mathrm{hl}\begin{array}{l}L=2 \times \ln \left(\frac{14.52}{0.995}\right) \times 10^{-7} \\L=5.36 \times 10^{-7} \mathrm{H} / \mathrm{m}\end{array}Caporitance C=\frac{2 \pi \epsilon_{0}}{\ln \frac{G m D}{G M R}} F / m t r.\begin{array}{l}\text { Hele GMR }=(r \times 24)^{1 / 2}=\left(5.9 \times 10^{-2} \times 24\right)^{1 / 2}=1.127 \mathrm{mtr} \text {. } \\C=\frac{2 \pi \times 10^{-9}}{36 \pi \times \ln \left(\frac{14.52}{1.127}\right)} \\C=21.73 \mathrm{pF} / \mathrm{m}) \\\end{array} ...