Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution:(a)A=\left[\begin{array}{cc}0 & -1 \\1 & 0\end{array}\right]Find Eigen values of \operatorname{det}(A-d I)=0\begin{array}{c}A-\lambda I=\left[\begin{array}{cc}0 & -1 \\1 & 0\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\0 & \lambda\end{array}\right] \\A-\lambda I=\left[\begin{array}{cc}0-\lambda & -1 \\1 & 0-\lambda\end{array}\right] \\\operatorname{det}(A-\lambda I)=0\left[\begin{array}{cc}0-\lambda & -1 \\1 & 0-\lambda\end{array} \mid=0\right. \\(0-\lambda)(0-\lambda)+1=0 \\\lambda^{2}+1=0 \\\lambda^{2}=-1 \Rightarrow \lambda=\sqrt{-1} \\\lambda= \pm i\end{array}Eigen values ore \lambda= \pm iFind Eigen noefer corres ponding Eigen value \lambda= \pm \grave{l}, \lambda=i\begin{array}{c}{\left[\begin{array}{cc}0-\lambda & -1 \\1 & 0-\lambda\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\0\end{array}\right]} \\{\left[\begin{array}{cc}0-i & -1 \\1 & 0-i\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\0\end{array}\right]} \\-x_{1} i-x_{2}=0 \\x_{2}=-i x_{1}\end{array}Eigen veetar v_{1}=\left[\begin{array}{r}1 \\ -i\end{array}\right]CS Scanned with CamScannerلy\begin{array}{l}\lambda= \pm i, \quad V=\left[\begin{array}{r}1 \\-i\end{array}\right] \\{\left[\begin{array}{cc}0 & -1 \\1 & 0\end{array}\right]\left[\begin{array}{l}1 \\0\end{array}\right]=\left[\begin{array}{c}0 \\-1\end{array}\right]}\end{array}contrsEquillibrium = contreCS Scanned with CamScanner ...