Question Solved1 Answer 3-18. Consider the two-link planar robot shown in Fig. P3.18 P(x, y Figure P3.18 A two-link planar robot for problem P3-18 Sketch the orientation of the robot and determine the (x, y) coordinates of point P for (a) 1 30°, 02 = 45°, / = /2 = 5 cm (by o = 30°, 62-45°, 4 = 2 = 5 cm Зя rad, e2 rad, 2= (c) 0 5 cm rad, 02 rad, = (d) 0 5 cm (eyo, = -30°, 2 = 45°, 4 3-18. Consider the two-link planar robot shown in Fig. P3.18 P(x, y Figure P3.18 A two-link planar robot for problem P3-18 Sketch the orientation of the robot and determine the (x, y) coordinates of point P for (a) 1 30°, 02 = 45°, / = /2 = 5 cm (by o = 30°, 62-45°, 4 = 2 = 5 cm Зя rad, e2 rad, 2= (c) 0 5 cm rad, 02 rad, = (d) 0 5 cm (eyo, = -30°, 2 = 45°, 4 = 2 = 5 cm

H2BICW The Asker · Advanced Mathematics

Transcribed Image Text: 3-18. Consider the two-link planar robot shown in Fig. P3.18 P(x, y Figure P3.18 A two-link planar robot for problem P3-18 Sketch the orientation of the robot and determine the (x, y) coordinates of point P for (a) 1 30°, 02 = 45°, / = /2 = 5 cm (by o = 30°, 62-45°, 4 = 2 = 5 cm Зя rad, e2 rad, 2= (c) 0 5 cm rad, 02 rad, = (d) 0 5 cm (eyo, = -30°, 2 = 45°, 4 = 2 = 5 cm
More
Transcribed Image Text: 3-18. Consider the two-link planar robot shown in Fig. P3.18 P(x, y Figure P3.18 A two-link planar robot for problem P3-18 Sketch the orientation of the robot and determine the (x, y) coordinates of point P for (a) 1 30°, 02 = 45°, / = /2 = 5 cm (by o = 30°, 62-45°, 4 = 2 = 5 cm Зя rad, e2 rad, 2= (c) 0 5 cm rad, 02 rad, = (d) 0 5 cm (eyo, = -30°, 2 = 45°, 4 = 2 = 5 cm
See Answer
Add Answer +20 Points
Community Answer
UJE4JE The First Answerer
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration

g)Hif, P_(1)x co-idinali givey by l_(1)cos theta_(1)Y-co-ddinate giver by varphi_(1)sin theta_(1).=>quadp_(1)=(l_(1)cos theta,l_(1)sin theta_(1))". "Hf p. x-coldinale given by l_(1)cos theta_(1)+l_(2)cos(theta_(1)+theta_(2)). 4- cldinke givey by 1_(1)sin theta_(1)+d_(2)sin(theta_(1)+theta_(2))P(l_(1)cos theta_(1)+l_(2)cos(theta_(1)+theta_(2)),l_(1)sin theta_(1)+l_(2)sin(theta_(1)+theta_(2)))". "a) theta_(1)-30^(@),theta_(2)=45^(@)*theta_(1)+theta_(2)=75^(@),l_(1)=l_(2)=5rarr p(5cos 30^(@)+:}Whey l_(1)=l_(2).they{:[l_(1)cos theta_(1)+l_(2)cos(theta_(1)+theta_(2))=1(cos theta_(1)+[cos theta_(1)cos theta_(2)-sin theta_(1)sin theta_(2))]],[=lambda[cos theta_(1)(1+cos theta_(2))-sin theta_(1)sin theta_(2)]]:}{:[l_(1)sin theta_(1)+l_(2)sin(theta_(1)+theta_(2))],[=l[sin theta_(1)+sin theta_(1)cos theta_(2)+cos theta_(1)sin theta_(2)]],[=1[sin theta_(1)(1+cos theta_(2))+cos theta_(1)sin theta_(2)]". "],[p=[d(cos theta_(1)(1+cos theta_(2))-sin theta_(1)sin theta_(2)),l[sin theta_(1)(1+cos theta_(2))+cos theta_(1)sin theta_(2))]],[" a) "l_(1)=l_(2)=l 25","theta_(1)=30^(@)","theta_(2)=45^(@)". "],[{:p=[5(cos 30^(@)(1+cos 45^(@))-sin 30^(@)*sin 45^(@))],5(sin 80^(@)(1+cos 45^(@))+cos 30^(@)*sin 45^(@))]],[=[5((sqrt3)/(2)(1+(1)/(r_(2)))-(1)/(2)xx(1)/(r_(2)))]","5((1)/(2)(1+(1)/(r_(2)))+(sqrt3)/(2)xx(1)/(sqrt2)]],[=5((sqrt3)/(2)+(sqrt3)/(2sqrt2)-(1)/(2sqrt2))","5((1)/(2)+(1)/(2sqrt2)+(sqrt3)/(2sqrt2))],[=[5((sqrt3)/(2)+(sqrt3-1)/(2sqrt2)),5((1)/(2)+(sqrt3+1)/(2sqrt2))]],[=[(5sqrt3)/(2)+(5(sqrt3-1))/(2sqrt2),(5)/(2)+(5(sqrt3+1))/(2sqrt2)]]:}b){:[l_(1)=l_(2)=5","0","230^( ... See the full answer