Question Solved1 Answer 3-18. Consider the two-link planar robot shown in Fig. P3.18. y P(x, y) 0₂ 0₁ O Figure P3.18 A two-link planar robot for problem P3-18. Sketch the orientation of the robot and determine the (x, y) coordinates of point P for (a) 0₁ = 30°, 0₂ = 45°, 1₁ = 1₂ = 5 cm (b) 0₁ = 30°, 0₂ = -45°, 1₁ = 1₂ = 5 cm 3π π (c) 0₁ = rad, 02 rad, 4₁ = ₂ = 4 2 5 cm 3π T (d) 0₁ 3-18. Consider the two-link planar robot shown in Fig. P3.18. y P(x, y) 0₂ 0₁ O Figure P3.18 A two-link planar robot for problem P3-18. Sketch the orientation of the robot and determine the (x, y) coordinates of point P for (a) 0₁ = 30°, 0₂ = 45°, 1₁ = 1₂ = 5 cm (b) 0₁ = 30°, 0₂ = -45°, 1₁ = 1₂ = 5 cm 3π π (c) 0₁ = rad, 02 rad, 4₁ = ₂ = 4 2 5 cm 3π T (d) 0₁ = rad, 0₂-5 rad, 4₁ = ₂ = 4 2 5 cm (e) 0₁ = -30°, 0₂ = 45°, l₁ = 1₂ = 5 cm (f) 0₁ = -30°, 0₂ = -45°, 1₁ = ₂ = 5 cm 3π T (g) 0₁ rad, 0₂: rad, 1₁ = ₂ = 4 5 cm 3π T == rad, ₁ = (h) 0₁ 1₂ = 5 cm 4 == 12 = rad, 0₂: ==

UVSTJI The Asker · Other Mathematics

Transcribed Image Text: 3-18. Consider the two-link planar robot shown in Fig. P3.18. y P(x, y) 0₂ 0₁ O Figure P3.18 A two-link planar robot for problem P3-18. Sketch the orientation of the robot and determine the (x, y) coordinates of point P for (a) 0₁ = 30°, 0₂ = 45°, 1₁ = 1₂ = 5 cm (b) 0₁ = 30°, 0₂ = -45°, 1₁ = 1₂ = 5 cm 3π π (c) 0₁ = rad, 02 rad, 4₁ = ₂ = 4 2 5 cm 3π T (d) 0₁ = rad, 0₂-5 rad, 4₁ = ₂ = 4 2 5 cm (e) 0₁ = -30°, 0₂ = 45°, l₁ = 1₂ = 5 cm (f) 0₁ = -30°, 0₂ = -45°, 1₁ = ₂ = 5 cm 3π T (g) 0₁ rad, 0₂: rad, 1₁ = ₂ = 4 5 cm 3π T == rad, ₁ = (h) 0₁ 1₂ = 5 cm 4 == 12 = rad, 0₂: ==
More
Transcribed Image Text: 3-18. Consider the two-link planar robot shown in Fig. P3.18. y P(x, y) 0₂ 0₁ O Figure P3.18 A two-link planar robot for problem P3-18. Sketch the orientation of the robot and determine the (x, y) coordinates of point P for (a) 0₁ = 30°, 0₂ = 45°, 1₁ = 1₂ = 5 cm (b) 0₁ = 30°, 0₂ = -45°, 1₁ = 1₂ = 5 cm 3π π (c) 0₁ = rad, 02 rad, 4₁ = ₂ = 4 2 5 cm 3π T (d) 0₁ = rad, 0₂-5 rad, 4₁ = ₂ = 4 2 5 cm (e) 0₁ = -30°, 0₂ = 45°, l₁ = 1₂ = 5 cm (f) 0₁ = -30°, 0₂ = -45°, 1₁ = ₂ = 5 cm 3π T (g) 0₁ rad, 0₂: rad, 1₁ = ₂ = 4 5 cm 3π T == rad, ₁ = (h) 0₁ 1₂ = 5 cm 4 == 12 = rad, 0₂: ==
See Answer
Add Answer +20 Points
Community Answer
JIEWFK The First Answerer
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration