Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1) !} x^{2 k+1}So. \sin (2)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1) !} 2^{(2 k+1)}50. \sin (2)=2+\left(\frac{-1}{3 !} \cdot 2^{3}\right)+\frac{1}{5 !} 2^{5}-\frac{1}{7 !} 2^{7}+\frac{1}{9 !} 2^{9} \cdotsTo calculate first three decimal plocer y sin(2), we will conside 3 decimeal places of our calculationSo\begin{array}{l}\sin (2) \approx 2-1.333+0.266-0.025+0.001 \\\sin (2) \approx 0.909\end{array}So) we require ' 5 ' terms to compute the first three terms(decimal) of sinc2).Answer:- five terms (5). ...