Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
(d) We know that impedencez=\frac{1}{\left(\sqrt{\left(w-\frac{1}{\omega l}\right)^{2}+\frac{1}{R^{2}}}\right)}z is maximum when square root is mmimum This can be achieved when,\begin{array}{l}\left(\omega c-\frac{1}{\omega L}\right)^{2}=0 \\\therefore \omega c=\frac{1}{\omega L} \\=\omega^{2}=\frac{1}{L C} \\=\omega=\frac{1}{\sqrt{L C}}\end{array} (b) Resonance angular frequency.\begin{array}{l}\omega_{R}=\frac{1}{\sqrt{L C}}=\frac{1}{(\sqrt{(1 \times 10-7) \times 0.3})} \\\therefore \omega_{R}=5773.5026 \mathrm{rad} / \mathrm{s}\end{array}(C) I_{\max }=\frac{11}{z}=\frac{240}{100} \Rightarrow I_{\max }=2-4 \mathrm{~A}(d) Amplitude of currents in resistir.I=\frac{V}{R}=\frac{240}{100} \Rightarrow P=2.4 \mathrm{~A}(2) Amplitude of current m mductance.\begin{array}{l}I=\frac{V}{X_{1}}=\frac{(240)}{(5773)(0.3)} \\I=0.1385 \mathrm{~A}\end{array} (f) As circuit is in resonance\begin{array}{c}\therefore X_{L}=X_{C} \\\therefore I=\frac{V}{X_{C}}=\frac{240}{(5773 \times 0.3)} \\I=0.1385 \mathrm{~A}\end{array} C3 Do Rate ...