Question Solved1 Answer hello, please all the questions below correclty and in a clear hand writing and all steps, and i promise you for thumbs up because i appricieate your work and your time 6. Categorize the solutions of the following expressions as a scalar, vector or meaningless. (7 marks) a) \( \vec{v} \cdot(\vec{v} \cdot \vec{w}) \) b) \( (\vec{u} \cdot \vec{v})+\vec{w} \) c) \( (\vec{a} \times \vec{b}) \times \vec{c} \) d) \( (\vec{a} \times \vec{b}) \vec{c} \) Page 3 of 5 6. e) \( (\vec{a} \cdot \vec{b}) \vec{c} \) f) \( (\vec{a} \times \vec{b}) \cdot \vec{c} \) 4. In each case, draw both \( \vec{a}+\vec{b} \) and \( \vec{a}-\vec{b} \). Use different COLOURS for the resultants if possible. (4 marks) a) b) 5. Given \( \vec{a}, \vec{b} \), and \( \vec{c} \) below draw the resultant \( \vec{a}+\vec{b}+\vec{c} \) : (2 marks)

RT3H0I The Asker · Calculus

hello, please all the questions below correclty and in a clear hand writing and all steps, and i promise you for thumbs up because i appricieate your work and your time

Transcribed Image Text: 6. Categorize the solutions of the following expressions as a scalar, vector or meaningless. (7 marks) a) \( \vec{v} \cdot(\vec{v} \cdot \vec{w}) \) b) \( (\vec{u} \cdot \vec{v})+\vec{w} \) c) \( (\vec{a} \times \vec{b}) \times \vec{c} \) d) \( (\vec{a} \times \vec{b}) \vec{c} \) Page 3 of 5 6. e) \( (\vec{a} \cdot \vec{b}) \vec{c} \) f) \( (\vec{a} \times \vec{b}) \cdot \vec{c} \) 4. In each case, draw both \( \vec{a}+\vec{b} \) and \( \vec{a}-\vec{b} \). Use different COLOURS for the resultants if possible. (4 marks) a) b) 5. Given \( \vec{a}, \vec{b} \), and \( \vec{c} \) below draw the resultant \( \vec{a}+\vec{b}+\vec{c} \) : (2 marks)
More
Transcribed Image Text: 6. Categorize the solutions of the following expressions as a scalar, vector or meaningless. (7 marks) a) \( \vec{v} \cdot(\vec{v} \cdot \vec{w}) \) b) \( (\vec{u} \cdot \vec{v})+\vec{w} \) c) \( (\vec{a} \times \vec{b}) \times \vec{c} \) d) \( (\vec{a} \times \vec{b}) \vec{c} \) Page 3 of 5 6. e) \( (\vec{a} \cdot \vec{b}) \vec{c} \) f) \( (\vec{a} \times \vec{b}) \cdot \vec{c} \) 4. In each case, draw both \( \vec{a}+\vec{b} \) and \( \vec{a}-\vec{b} \). Use different COLOURS for the resultants if possible. (4 marks) a) b) 5. Given \( \vec{a}, \vec{b} \), and \( \vec{c} \) below draw the resultant \( \vec{a}+\vec{b}+\vec{c} \) : (2 marks)
See Answer
Add Answer +20 Points
Community Answer
UVMP1J The First Answerer
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration

Step1/4.gkwtCW{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/data-styled.g379[id="sc-z3f5s1-0"]{content:"gkwtCW,"}/*!sc*/.iIwMoS{white-space:pre-wrap;}/*!sc*/data-styled.g381[id="sc-1aslxm9-0"]{content:"iIwMoS,"}/*!sc*/.fzJtOB{text-align:start;}/*!sc*/data-styled.g383[id="sc-1aslxm9-2"]{content:"fzJtOB,"}/*!sc*/.hOZehF{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/data-styled.g410[id="sc-9wsboo-0"]{content:"hOZehF,"}/*!sc*/.lhIoTe{margin:0;font-size:1rem;}/*!sc*/data-styled.g412[id="sc-1swtczx-0"]{content:"lhIoTe,"}/*!sc*/.dirqSb{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/data-styled.g441[id="sc-1wwe652-0"]{content:"dirqSb,"}/*!sc*/.dZTFxH{background-color:#fff;font-size:16px;}/*!sc*/data-styled.g442[id="sc-1wwe652-1"]{content:"dZTFxH,"}/*!sc*/.kZhTRC{-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;}/*!sc*/data-styled.g443[id="sc-1wwe652-2"]{content:"kZhTRC,"}/*!sc*/.iHelzO{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/data-styled.g445[id="sc-1sugbjn-0"]{content:"iHelzO,"}/*!sc*/a) v . (v . w) is a scalar, as it represents the dot product of a vector with itself, which is a scalar value.b) (u . v) + w is a vector, as it represents the addition of two vectors and a scalar, the sum of which is a vector.c) (a x b) x c is a vector, as it represents the cross product of two vectors, which results in a vector.Explanation:Please refer to solution in this step.Step2/4.gkwtCW{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/data-styled.g379[id="sc-z3f5s1-0"]{content:"gkwtCW,"}/*!sc*/.iIwMoS{white-space:pre-wrap;}/*!sc*/data-styled.g381[id="sc-1aslxm9-0"]{content:"iIwMoS,"}/*!sc*/.fzJtOB{text-align:start;}/*!sc*/data-styled.g383[id="sc-1aslxm9-2"]{content:"fzJtOB,"}/*!sc*/.hOZehF{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/data-styled.g410[id="sc-9wsboo-0"]{content:"hOZehF,"}/*!sc*/.lhIoTe{margin:0;font-size:1rem;}/*!sc*/data-styled.g412[id="sc-1swtczx-0"]{content:"lhIoTe,"}/*!sc*/.dirqSb{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/data-styled.g441[id="sc-1wwe652-0"]{content:"dirqSb,"}/*!sc*/.dZTFxH{background-color:#fff;font-size:16px;}/*!sc*/data-styled.g442[id="sc-1wwe652-1"]{content:"dZTFxH,"}/*!sc*/.kZhTRC{-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;}/*!sc*/data-styled.g443[id="sc-1wwe652-2"]{content:"kZhTRC,"}/*!sc*/.iHelzO{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/data-styled.g445[id="sc-1sugbjn-0"]{content:"iHelzO,"}/*!sc*/d) (a x b) c is meaningless, as it represents the product of a vector and a scalar, which is not a well-defined mathematical oper ... See the full answer