Question Solved1 Answer 62. The charges \( q_{1}=2.0 \times 10^{-7} \mathrm{C}, q_{2}=-4.0 \times 10^{-7} \mathrm{C} \), and \( q_{3}=-1.0 \times 10^{-7} \mathrm{C} \) are placed at the corners of the triangle shown below. What is the force on \( q_{1} \) ? 62. The charges q1​=2.0×10−7C,q2​=−4.0×10−7C, and q3​=−1.0×10−7C are placed at the corners of the triangle shown below. What is the force on q1​ ?

LCS5S5 The Asker · Physics

Transcribed Image Text: 62. The charges q1​=2.0×10−7C,q2​=−4.0×10−7C, and q3​=−1.0×10−7C are placed at the corners of the triangle shown below. What is the force on q1​ ?
More
Transcribed Image Text: 62. The charges q1​=2.0×10−7C,q2​=−4.0×10−7C, and q3​=−1.0×10−7C are placed at the corners of the triangle shown below. What is the force on q1​ ?
See Answer
Add Answer +20 Points
Community Answer
KVVQJB
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration

Coulomb's law in vector form{:[ vec(F)_(12)=(kq_(1)q_(2)(( vec(r))- vec(r)^(')))/(|(( vec(r))- vec(r)^('))|^(3))],[" Here " vec(F)_(12)=" force exerted by "q_(2)" on "q_(1)],[ vec(r)=" position vector of "q_(1)],[ vec(r)^(')=" position vector of "q_(2)],[k=" Coulomb's constant "=9xx10^(9)Nm^(2)//c^(2)]:}Take q_(3) at origin.Force exerted by q_(3) on q_(1):-{:[ vec(gamma)=3.0m hat(j)"," vec(gamma)^(')=0 hat(i)+0 hat(j)],[ vec(gamma)- vec(gamma)^(')=(3m) hat(j)","|( vec(gamma))- vec(gamma)^(')|=3m],[ vec(F)_(13)=((9xx10^(9)Nm^(2)//c^(2))(2.0 xx10^(-7)c)(-1.0 xx10c)(3(m))( hat(j)))/((3(m))^(3))],[=(-2.0 xx10^(-5)(N)) hat(j)]:}Force exerted by q_( ... See the full answer