Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Sol:given values,calculations for \theta_{2}\begin{aligned}P & =\frac{v_{1} v_{2}}{x} \sin \theta_{2} \\0.133 & =\frac{(0.9)(1)}{0.4} \sin \theta_{2} \\\sin \theta_{2} & =\frac{0.0532}{0.9} \\\theta_{2} & =\sin ^{-1} 0.0591 \\\theta_{2} & =3.38^{\circ} \\& =\end{aligned}\begin{array}{l}\theta_{12}=\frac{v_{1}}{z_{2}}\left[v_{1}-0.9 \cos \theta_{2}\right] \\=\frac{1}{0.4}[1-0.9 \cos (3.38)] \\=2.5 \times 0.101 \\\theta_{12}=-0.252 \\\theta_{G_{12}}=-0.752 \\0.748 \\0.5 \\\end{array}(injecting)calculation for \theta_{21}\begin{aligned}\theta_{21} & =\frac{v_{2}}{z}\left[v_{2}-v_{1} \cos \theta_{2}\right] \\& =\frac{0.9}{0.4}\left[0.9-\cos \left(3.38^{\circ}\right)\right] \\\theta_{21} & =2.25 \times-0.0982 \\\theta_{21} & =-0.220 \\\theta_{42} & =-0.72 \quad 0.220 \quad 0.0 .72 \\& =\end{aligned}Calculations for S_{H_{1}} \therefore\begin{array}{l} S_{a_{1}}=P_{a_{1}}+j a_{a_{11}} \\S_{a_{1}}=0.733+j 0.752 \\S_{a_{1}}=1.05445 .73^{\circ} \\2\end{array}Calculations for \mathrm{SC}_{2}-\begin{array}{l}S_{G_{2}}=P_{C_{2}}-j Q_{G_{2}} \\S_{G_{2}}=1-j 0.72 \\s_{c_{2}}=1.23\left[-35.75^{\circ}\right. \\\end{array}calculations\begin{aligned}= & I_{a_{1}}- \\I_{a_{1}} & =\frac{S_{a_{1}}}{v_{1}} \\& =\frac{1.05445 .73^{\circ}}{140^{\circ}} \\I_{a_{1}} & =1.05445 .73^{\circ} \\& =\end{aligned}Calculations for I_{G_{2}}.\begin{aligned}I_{C_{2}} & =\frac{S_{G_{2}}}{V_{2}} \\& =\frac{1.23 L-35.75^{\circ}}{0.943 .38^{\circ}} \\I_{G_{2}} & =1.36 L^{-39.13^{\circ}} \\& =\end{aligned}Calculations for t_{a_{1}}:\begin{array}{c}\epsilon_{a_{1}}=v_{1} \mid \theta_{1}+I_{a_{1}}, \theta \times z \theta_{2} \\\left.\left.\epsilon_{a_{1}}=110^{\circ}+(1.05) 45.73^{\circ}\right) \times(0.4) 3.38^{\circ}\right) \\\epsilon_{a_{1}}=110^{\circ}+0.42\left(49.11^{\circ}\right. \\\epsilon_{a_{1}}=1.31413 .98^{\circ}\end{array}\begin{array}{l}\text { Calculations for } t_{a_{2}} \\ = \\ \epsilon_{a_{2}}=v_{2} \mathrm{LO}_{2}+I_{a_{2}} \mathrm{LO}_{2} \times z \mathrm{O}_{2} \\ \epsilon_{a_{2}}=0.9\left(3.38^{\circ}+\left(1.36+-39.13^{\circ}\right) \times(0.4) 3.38^{\circ}\right) \\ t_{a_{2}}=1.36 \quad-11.12^{\circ}\end{array}   Please give thumbs up ...