Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution Data:- m=700 \mathrm{bbl} / \mathrm{hr}\text { S.G. }=0.8524Air fuel ratio f(x)=20Average specific heat of stock =2.268 \mathrm{kj} / \mathrm{lg}{ }^{\circ} \mathrm{C}Length (L)=6 \mathrm{~m}dicono D=6.5 \mathrm{~cm}=0.065 \mathrm{~m}Total prajected Area =150 \mathrm{~m}^{2}. (conversion =200 \mathrm{lb} / \mathrm{bbl} )\Rightarrow Total Heat Liberated (Q)=M_{\text {fuel }} \times \mathrm{NHV}\begin{aligned}& =40.5 \times 10^{3} \times 1700 \\\therefore Q & =6.88 \times 10^{7} \mathrm{kj} / \mathrm{hr}\end{aligned}\rightarrow projected Area of one tube (L * D)=6 \times 0.065=0.39 \mathrm{~m}^{2}\rightarrow No. of tubes =\frac{150}{0.39}=385 Tubes\Rightarrow \therefore \alpha \cdot A_{p}=0.88 \times 385 \times(2 \times 0.065 \times 6)=264.26 \mathrm{~m}^{2}\begin{aligned}\Rightarrow \text { Heat absorption } \%(R) & =\frac{1}{1+\frac{G \sqrt{Q / \alpha A P}}{S}} \times 100 \\& =\frac{1}{1+\frac{20 \sqrt{6.88 \times 10^{7} / 264.26}}{14200}} \times 100 \\\therefore \%(R) & =58.18 \%\end{aligned}\sim outlet temperatune of the stoek:-\begin{array}{l}\therefore Q=m C_{P} \Delta t \\\therefore 0.5818 \times 6.88 \times 10^{7}=700 \times 200 \times 0.8524 \times 2.268 \times \Delta t \\\therefore \Delta t=147.89\end{array}so, the outlet temperature is equal to 147.89+230=377.89^{\circ} \mathrm{C} ...