Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Answer a) Normal Force=500 lbs,   shear force=0 answer b) Normal force= 433.02 lbs,   shear force= 250 lbs   \thetacase aLet the Area of crols section A B C D=A \mathrm{~m}^{2}\Rightarrow \sigma_{x}=500 / \mathrm{A} \quad \mathrm{lb} / \mathrm{m}^{2}So \sqrt{6_{n}}=\frac{6 x+6 y}{2}+\frac{6 x-6 y}{2} \cos 2 \theta+2 \sin 2 \thetaHere \theta=0 as no inclination.\begin{array}{l}\Rightarrow \sigma_{n}=\frac{6 x}{2}+\frac{6 x}{2}+0=6 x \\\Rightarrow \sigma_{n}=6_{x}=\frac{500 \mathrm{lb}}{\text { Area }} \\\Rightarrow F_{n}=6_{n} \times \text { Arean }=500 \mathrm{lb} \text { Ans }\end{array}sly\begin{aligned}\tau_{a a} & =\frac{(6 x-6 y)}{2} \sin 2 \theta-2 \cos 2 \theta \\& =0-0=0 \text { An }\end{aligned}\Rightarrow F_{\text {suear }}=0 \text { Ar }Case b\text { Here } \sigma_{x}=\frac{500 \mathrm{~b}}{\text { Area }}\begin{array}{l} \sigma_{n}=\frac{6 x+6 y}{2}+\frac{6 x-6 y}{2} \cos 2 \theta+\pi \sin 2 \theta \\=\frac{6 x}{2}+\frac{6 x}{2} \times \cos \left(2 \times 30^{\circ}\right) \\=\frac{6 x}{2}+\frac{6 x}{2} \times \frac{1}{2}=\frac{3}{4} 6 x \\\Rightarrow 6_{n}=\frac{3}{4} \times \frac{500}{\text { Area }} A B C D \\F_{n}=6_{n} \times \text { Area bb } \\\text { Area }\end{array}\begin{array}{l}\tau_{b b}=\frac{6 x-6 y}{2} \sin 2 \theta-\pi \cos 2 \theta \\=\frac{6 x}{2} \times \sin \left(60^{\circ}\right) \\=\frac{6 x}{2} \times 0.866=\frac{500}{2 \times(A r e a)_{A B C D}} \times 0.866 \\\Rightarrow F_{\text {shear }}=Z_{b b} \times(\text { Area })_{b b} \quad\left(A r e a_{b b}=\frac{\text { Area } \left._{A B C 0}\right)}{\cos \theta}\right) \\=\frac{500}{2 \times(\text { Area }) A B C D} \times \frac{0.866}{\cos \theta} \\=\frac{500}{2} \times 0.866 \times \frac{1}{0.866}=250 \mathrm{lbs} \\\end{array}An ...