Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

Answer a) Normal Force=500 lbs,   shear force=0 answer b) Normal force= 433.02 lbs,   shear force= 250 lbs   \thetacase aLet the Area of crols section A B C D=A \mathrm{~m}^{2}\Rightarrow \sigma_{x}=500 / \mathrm{A} \quad \mathrm{lb} / \mathrm{m}^{2}So \sqrt{6_{n}}=\frac{6 x+6 y}{2}+\frac{6 x-6 y}{2} \cos 2 \theta+2 \sin 2 \thetaHere \theta=0 as no inclination.\begin{array}{l}\Rightarrow \sigma_{n}=\frac{6 x}{2}+\frac{6 x}{2}+0=6 x \\\Rightarrow \sigma_{n}=6_{x}=\frac{500 \mathrm{lb}}{\text { Area }} \\\Rightarrow F_{n}=6_{n} \times \text { Arean }=500 \mathrm{lb} \text { Ans }\end{array}sly\begin{aligned}\tau_{a a} & =\frac{(6 x-6 y)}{2} \sin 2 \theta-2 \cos 2 \theta \\& =0-0=0 \text { An }\end{aligned}\Rightarrow F_{\text {suear }}=0 \text { Ar }Case b\text { Here } \sigma_{x}=\frac{500 \mathrm{~b}}{\text { Area }}\begin{array}{l} \sigma_{n}=\frac{6 x+6 y}{2}+\frac{6 x-6 y}{2} \cos 2 \theta+\pi \sin 2 \theta \\=\frac{6 x}{2}+\frac{6 x}{2} \times \cos \left(2 \times 30^{\circ}\right) \\=\frac{6 x}{2}+\frac{6 x}{2} \times \frac{1}{2}=\frac{3}{4} 6 x \\\Rightarrow 6_{n}=\frac{3}{4} \times \frac{500}{\text { Area }} A B C D \\F_{n}=6_{n} \times \text { Area bb } \\\text { Area }\end{array}\begin{array}{l}\tau_{b b}=\frac{6 x-6 y}{2} \sin 2 \theta-\pi \cos 2 \theta \\=\frac{6 x}{2} \times \sin \left(60^{\circ}\right) \\=\frac{6 x}{2} \times 0.866=\frac{500}{2 \times(A r e a)_{A B C D}} \times 0.866 \\\Rightarrow F_{\text {shear }}=Z_{b b} \times(\text { Area })_{b b} \quad\left(A r e a_{b b}=\frac{\text { Area } \left._{A B C 0}\right)}{\cos \theta}\right) \\=\frac{500}{2 \times(\text { Area }) A B C D} \times \frac{0.866}{\cos \theta} \\=\frac{500}{2} \times 0.866 \times \frac{1}{0.866}=250 \mathrm{lbs} \\\end{array}An ...