Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
SolutionGiver dota:\begin{array}{l}T_{i}=25^{\circ} \mathrm{C} \\T_{\infty}=300^{\circ} \mathrm{C} \\h=300 \mathrm{w} / \mathrm{m}^{2} \cdot \mathrm{k} \\t_{m}=400 \mathrm{sec} . \\\alpha=10^{-4} \mathrm{~m}^{2} / \mathrm{s} \\k=400 \mathrm{~W} / \mathrm{m} \cdot \mathrm{k}\end{array}Assumptions:-The rod is one dimentional conduction solid. (losses ane negligible to insulation).Negligible termal resistance of coatingThe properties of rod are constant.The rod approximated as semi-infinite medium.Thermal response corresponding to transient Conduction in a semi-infinate solid is given by\begin{array}{l}\frac{T_{(x, t)}-T_{i}}{T_{\infty}-T_{i}}=\operatorname{erfc}\left[\frac{x}{2(\alpha t)^{1 / 2}}\right]-\left[\exp \left[\frac{h x}{k}+\frac{h^{2} \alpha t}{k}\right]\right] \\*\left[\operatorname{erfc}\left[\frac{x}{2(\alpha t)^{1 / 2}}+\frac{n(\alpha t)^{1 / 2}}{k}\right]\right] \\\end{array}for x=0 \quad T(x, t)=T(0, t)=T_{s} and \operatorname{ertc}(0)=1\begin{array}{l} \therefore \frac{T_{S}-T_{i}}{T_{\infty}-T_{i}}=1-\exp \left[\frac{h^{2} \alpha t_{m}}{k^{2}}\right] \operatorname{ertc}\left[\frac{h\left(\alpha t_{n}\right)^{1 / 2}}{k}\right] \\\frac{T_{S}-T_{i}}{T_{\infty}-T_{i}}=1-\exp \left[\frac{(300)^{2}\left(10^{-4}\right)(400)}{(400)^{2}}\right] \operatorname{ertc}\left[\frac{(300)\left(10^{-4} \times 400\right)^{1 / 2}}{400}\right] \\\frac{T_{S}-T_{i}}{T_{\infty}-T_{i}}=1-\exp [0.0225] \operatorname{erfc}[0.15] \\\Rightarrow T_{S}-T_{i}=\left(T_{\infty}-T_{i}\right)[1-\exp [0.0225] \operatorname{erfc}[0.15]] \\\Rightarrow T_{S}=T_{i}+\left[T_{\infty}-T_{i}\right][1-\exp [0.025] \operatorname{ertc}[0.15]] \\T_{S}=25+[300-25][1-(1.0253)(0.832)] \\T_{S}=25+40.411 \\T_{S}=65.411^{0} \mathrm{C}\end{array}The melting point of coating is T_{S}=65.411^{\circ} \mathrm{C} ...