Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
g given\begin{array}{l}D=15 \\S=0.008 \quad \Rightarrow s^{2}=0.000064 \\\alpha=0.01 \quad(99 \%)\end{array}99 \% confidence interval of 62 .\begin{array}{l}\frac{(n-1) s^{2}}{x^{2} \alpha / 2}<6^{2}<\frac{(n-1) s^{2}}{x^{2}-\alpha / 2} \\n-1=d 9 \operatorname{ses} \sigma \text { of freedom }=15-1=14 \\\alpha=0.01\end{array}whese\begin{array}{l}x_{\alpha / 2}^{2} \Rightarrow x_{0.01 / 2}^{2} \Rightarrow x_{0.005}^{2} \\x_{\alpha / 2}^{2}=x_{0.005}^{2}=31.32\end{array}and x_{1}^{2}-\alpha / 2 \Rightarrow x_{1}^{2}-0.01 / 2 \Rightarrow x^{2}-0.005\begin{array}{c}x_{1}^{2}+\alpha_{12}=x^{2}{ }_{0}^{2} 995=4.08 \\\frac{14 \times 0.000069}{31.32}<6^{2}<\frac{14 \times 0.000064}{4.08} \\=0.000029<6^{2}<0.00020\end{array}99 \% confintencre interval of 6^{2} 1 \mathrm{j}\begin{array}{l}\text { lower bound }=0.000029 \\\text { upper brund }=0.00020 .\end{array} ...