(1) Poles at j, –j, j2, –j2; zeros at –2, 2

(2) Poles at j, –j, j2, –j2; zeros at –1, 1

Please write down all calculations. Thanks.

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

Solution:-(i) poles of j,-j, j 2,-j 2; zeros of -2,2 construction Rules of Root locey : -Root locus its symmetrical obout real axilyIf P>Z, the number of branchey terminating at infinity =p-zA point on real axil if faid to be on root locus If, to the right side of thit point, the sum of open loop pores and zeras if an odd number.Angle of Asymptotey!-\text { Number of A-ymptates } \begin{array}{l}=p-2 \\\Rightarrow 4-2=2\end{array}\rightarrow Angle of Asymptotey \phi=\frac{(2 q+1) 180^{\circ}}{p-z} \phi_{1}=\frac{(2 \times 0+1) 180^{\circ}}{2}=90^{\circ}\begin{array}{l}\phi_{1}=\frac{(2 \times 0+1) 180^{\circ}}{2}=90^{\circ} \\\phi_{2}=\frac{(2 \times 1+1) 180}{2}=270^{\circ} \\\phi=90^{\circ}, 270^{\circ}\end{array}centroid!:centroid l's the point of entertection of Asymptotes on the real axi's\begin{array}{l}=\frac{\sum \text { Real part of cpen loop poly }-\sum \text { zeray }}{p-2} \\=\frac{\sum 0-\sum-2+2}{z}=0 \\\text { centroid }=0\end{array}[2] similak for poles \left.j,-j, j_{2},-j_{2}\right\} zerajat -1,1 ...