Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Given that a fence height 12-ft running parallel to house wall at a distance of 30 \mathrm{ft}. So,Let the horizontal distance from the foot of the tower to fence is b \mathrm{ft} and height of the house is a ft From the above figure the triangles \triangle A C E and \triangle B C D are similar. Therufore,\begin{array}{l}\frac{b}{30+b}=\frac{12}{a} \\\Rightarrow a=\frac{12(30+b)}{b}\end{array}Using the pythogorean theorem\begin{array}{l}E C=l=\sqrt{a^{2}+(30+b)^{2}} \\l=\sqrt{\left(\frac{12(30+b)}{b}\right)^{2}+(30+b)^{2}} \quad\left(\because a=\frac{12(30+b)}{b}\right) \\l=\sqrt{(30+b)^{2}\left(\frac{144}{b^{2}}+1\right)}\end{array}\begin{array}{l}l=\sqrt{(30+b)^{2}\left(\frac{194+b^{2}}{b^{2}}\right)} \\l=\frac{30+b}{b} \sqrt{144+b^{2}}\end{array}To find the shortest length we have to solve l^{\prime}(b)=0\begin{array}{l}l^{\prime}(b)=\left(\frac{30+b}{b}\right)\left(\frac{2 b}{2 \sqrt{144+b^{2}}}\right)+\left(\frac{b-(30+b)}{b^{2}}\right) \sqrt{144+b^{2}}=0 \\l^{\prime}(b)=\frac{30+b}{\sqrt{144+b^{2}}}-\frac{30 \sqrt{144+b^{2}}}{b^{2}}=0 \\l^{\prime}(b)=\frac{30 b^{2}+b^{3}-30\left(144+b^{2}\right)}{b^{2} \sqrt{144+b^{2}}}=0 \\l^{\prime}(b)=\frac{b^{3}-4320}{b^{2} \sqrt{144+b^{2}}}=0 \\\Rightarrow b^{3}=4320 \\b=\sqrt[3]{4320}=6 \sqrt[3]{20}=16.287 \\b=16.287 \\l=\frac{30+16.287}{16.287} \sqrt{144+(16.287)^{2}} \\l=57.49379374125 \approx 57.5\end{array}Hence,The length of the shortest ladder is 57.5 \mathrm{ft}. ...