A 500 g block is attached to a horizontal spring with a spring
constant of 50 N/m. At t = 0.1 s, its position

is x = 0.2 m and its velocity is vx = 0.5 m/s.

determine the amplitude, the pulsation and the phase constant of
the system. Write the complete function

x(t) of this system and

At what instant is the mass at x = -0.2 m with a velocity of vx =
0.5 m/s for the first time since it was released?

first time since it was released?

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

\begin{array}{l}x(t)=A \sin (\omega t+4) \\V(t)=\frac{d x(t)}{d t}=A \omega \cos (\omega t+\phi) \\a(t)=\frac{d v(t)}{d t}=-\omega^{2} A \cos (\omega t+\phi) \\a(t)=-\omega^{2}[A \cos (\omega t+4)] \\a=-\omega^{2} x\end{array}Here \omega=10 rodls\therefore a=-100 xAlgebraic equotion of a as a function of xAso\begin{array}{l}U^{2}=[A \omega \cos (\omega t+4)]^{2} \\V^{2}=A^{2} \omega^{2} \cos ^{2}(\omega t+4) \\U^{2}=\omega^{2} A^{2}\left[1-\sin ^{2}(\omega t+4)\right] \\U^{2}=\omega^{2}\left[A^{2}-A^{2} \sin ^{2}(\omega t+4)\right] \\V^{2}=\omega^{2}\left[A^{2}-x^{2}\right]\end{array}V=\omega \cdot \sqrt{A^{2}-x^{2}}Algebric equotion of V Here \omega=10 \operatorname{rad} / \mathrm{s} \& A=0.206 os a functim x. or A^{2}=0.0425\therefore V=10 \sqrt{0.0425-x^{2}}notural leyth(Equillibriom position)geverr Eqn of Oscillotim of sprirg-black Syster is given by;x(t)=A \sin (\omega t+\&)Here A= amplutude\omega= anjular frequen & 4= phase constantgiver: m=500 \mathrm{~g}=0.5 \mathrm{~g} \quad k=50 \mathrm{~N} / \mathrm{m}K=m \omega^{2} \Rightarrow \omega=\sqrt{k / m}=\sqrt{\frac{50}{0.5}}=10 \operatorname{rod} / \mathrm{s}veloaty V(t)=\frac{d x}{d t}V(t)=A \omega \cos (\omega t+\phi)\because A t t=0.1 \mathrm{sec} \quad x=0.2 \mathrm{~m} \quad \& \quad v=0.5 \mathrm{~m} / \mathrm{s}From(i)\begin{array}{cc}0.2=A \sin (0.1 \omega+4) & 0.5=A \times 10 \cos (10 \times 0.1+4) \\0.2=A \sin (0.1 \times 10+\phi) & 10 A \cos (q+1)=0.5 \\0.2=A \sin (4+1) & A \cos (\phi+1)=0.05 \\A^{2}=0.2^{2}+0.05^{2}=0.0425\end{array}Amplitude A=0.206 \mathrm{~m}=20.6 \mathrm{~cm}Answir.\begin{aligned}\sin (4+1) & =\frac{0.2}{A} \quad \cos (4+1)=\frac{0.05}{A} \\\sin (4+1) & =\frac{0.2}{0.206} \quad \cos (4+1)=\frac{0.05}{0.206} \\\therefore 4+1 & =61.33 \mathrm{rod} \\A & =75 \text { rodian } 0.33 \mathrm{rod} \\4 & =18.9^{\circ} \text { Answer }\end{aligned}Answerpulsotion or frequency f=\frac{\omega}{2 \pi}=\frac{10}{2 \pi}=\frac{1.6 \mathrm{~Hz}}{\text { Ansinan }} Ansiver.blten x=-0.2 \quad V=0.5 \mathrm{mls}\begin{array}{l}x=A \sin (\omega t+4) \\x=(0.206 m) \sin (10 t+0.33)\end{array}The complet functim-0.2=0.206 \sin (10 t+0.37)(Answer)\sin (10 t+0.33)=-\frac{0.2}{0.206}\begin{aligned}10 t+0.33 & =\sin ^{-1}\left(\frac{-0.2}{0.206}\right) \\& =2 \pi-1.33 \quad \text { As } \quad \forall>0\end{aligned}t=\frac{2 \pi-1.33-0.33}{10}=0.46 \mathrm{sec} ...