A 500 g block is attached to a horizontal spring with a spring
constant of 50 N/m. At t = 0.1 s, its position
is x = 0.2 m and its velocity is vx = 0.5 m/s.
determine the amplitude, the pulsation and the phase constant of
the system. Write the complete function
x(t) of this system and
At what instant is the mass at x = -0.2 m with a velocity of vx =
0.5 m/s for the first time since it was released?
first time since it was released?
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
\begin{array}{l}x(t)=A \sin (\omega t+4) \\V(t)=\frac{d x(t)}{d t}=A \omega \cos (\omega t+\phi) \\a(t)=\frac{d v(t)}{d t}=-\omega^{2} A \cos (\omega t+\phi) \\a(t)=-\omega^{2}[A \cos (\omega t+4)] \\a=-\omega^{2} x\end{array}Here \omega=10 rodls\therefore a=-100 xAlgebraic equotion of a as a function of xAso\begin{array}{l}U^{2}=[A \omega \cos (\omega t+4)]^{2} \\V^{2}=A^{2} \omega^{2} \cos ^{2}(\omega t+4) \\U^{2}=\omega^{2} A^{2}\left[1-\sin ^{2}(\omega t+4)\right] \\U^{2}=\omega^{2}\left[A^{2}-A^{2} \sin ^{2}(\omega t+4)\right] \\V^{2}=\omega^{2}\left[A^{2}-x^{2}\right]\end{array}V=\omega \cdot \sqrt{A^{2}-x^{2}}Algebric equotion of V Here \omega=10 \operatorname{rad} / \mathrm{s} \& A=0.206 os a functim x. or A^{2}=0.0425\therefore V=10 \sqrt{0.0425-x^{2}}notural leyth(Equillibriom position)geverr Eqn of Oscillotim of sprirg-black Syster is given by;x(t)=A \sin (\omega t+\&)Here A= amplutude\omega= anjular frequen & 4= phase constantgiver: m=500 \mathrm{~g}=0.5 \mathrm{~g} \quad k=50 \mathrm{~N} / \mathrm{m}K=m \omega^{2} \Rightarrow \omega=\sqrt{k / m}=\sqrt{\frac{50}{0.5}}=10 \operatorname{rod} / \mathrm{s}veloaty V(t)=\frac{d x}{d t}V(t)=A \omega \cos (\omega t+\phi)\because A t t=0.1 \mathrm{sec} \quad x=0.2 \mathrm{~m} \quad \& \quad v=0.5 \mathrm{~m} / \mathrm{s}From(i)\begin{array}{cc}0.2=A \sin (0.1 \omega+4) & 0.5=A \times 10 \cos (10 \times 0.1+4) \\0.2=A \sin (0.1 \times 10+\phi) & 10 A \cos (q+1)=0.5 \\0.2=A \sin (4+1) & A \cos (\phi+1)=0.05 \\A^{2}=0.2^{2}+0.05^{2}=0.0425\end{array}Amplitude A=0.206 \mathrm{~m}=20.6 \mathrm{~cm}Answir.\begin{aligned}\sin (4+1) & =\frac{0.2}{A} \quad \cos (4+1)=\frac{0.05}{A} \\\sin (4+1) & =\frac{0.2}{0.206} \quad \cos (4+1)=\frac{0.05}{0.206} \\\therefore 4+1 & =61.33 \mathrm{rod} \\A & =75 \text { rodian } 0.33 \mathrm{rod} \\4 & =18.9^{\circ} \text { Answer }\end{aligned}Answerpulsotion or frequency f=\frac{\omega}{2 \pi}=\frac{10}{2 \pi}=\frac{1.6 \mathrm{~Hz}}{\text { Ansinan }} Ansiver.blten x=-0.2 \quad V=0.5 \mathrm{mls}\begin{array}{l}x=A \sin (\omega t+4) \\x=(0.206 m) \sin (10 t+0.33)\end{array}The complet functim-0.2=0.206 \sin (10 t+0.37)(Answer)\sin (10 t+0.33)=-\frac{0.2}{0.206}\begin{aligned}10 t+0.33 & =\sin ^{-1}\left(\frac{-0.2}{0.206}\right) \\& =2 \pi-1.33 \quad \text { As } \quad \forall>0\end{aligned}t=\frac{2 \pi-1.33-0.33}{10}=0.46 \mathrm{sec} ...