Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution: from the Given values:let\begin{array}{l}P_{2}=P_{3}=4.5 \text { bar } \\P_{4}=0.04 \text { baN } \\P_{6}=P_{7}=15 \text { bar } P_{8}=0.04 \text { bar. }\end{array}where The super heater is not used a sit.Graph!Here from \mathrm{Hg} table (given) F\begin{array}{c}h_{3}=h g @ P_{3}=4.5=355.98 \mathrm{~kJ} / \mathrm{kg} \\s_{3}=S_{9} @ P_{3}=0.5397 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}\end{array}\begin{array}{c}s_{4}=s_{3} \\s_{4}{ }^{x} p_{4}+x_{4} S_{f_{4}}=0.5397 \\x_{y}=\frac{0.5397-0.0808}{0.6925-0.0808}=0.7502\end{array}where h_{y}=h_{f_{4}}+x_{y} h_{f_{y}}=29.98+0.7502 \times(329.85 -29.98)\begin{array}{l}h_{4}=254.94 \mathrm{~kJ} / \mathrm{kg} \\h_{1}=h_{R} \otimes P_{1}=29.98 \mathrm{~kJ} / \mathrm{kg}\end{array}h_{1}=h f \otimes P_{1}=29.98 \mathrm{~kJ} / \mathrm{kg}\begin{array}{rl}\omega_{p_{1}}=\vartheta_{1} & d p=V_{f_{1}} \times\left(p_{2}-p_{1}\right)=76.5 \times 10^{-6} \times(4.5-0.04) \times 10^{2} \\\omega_{p_{1}}=0.03412 \mathrm{~kJ} / \mathrm{kg}\end{array}h_{2}=h_{1}+\omega_{p_{1}}=29.98+0.03412=30.014 \mathrm{~kJ} / \mathrm{kg}\begin{array}{l} n_{1}=n_{H g}=\left|\frac{W_{T}-W_{P}}{Q_{S}}\right|_{H g} \\\left(W_{T}\right)_{A g}=\left(h_{3}-h_{4}\right)=355.98-254.59=101.04 \mathrm{~kJ} / \mathrm{kg} \\\left(\omega_{P}\right)_{H g}=w_{P}=0.03412 \mathrm{~kJ} / \mathrm{kg} \\\left(Q_{S}\right)_{H g}=h_{3}-h_{2}=355.98-30.014 \\=3250966 \mathrm{~kJ} / \mathrm{kg} \\n_{1}=\frac{101.04-0.03412}{325.96}=0.3098\end{array}for the strem lycle:-From stream table \Rightarrow at P_{6}=P_{7}=15 bar\begin{array}{l}h_{7}=h_{g} @ P_{7}=2791 \mathrm{~kJ} / \mathrm{kg} . \\S_{7}=S_{9} @ P_{7}=6.443 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \\S_{8}=S_{78}+x_{B} S_{898}=S_{7}=6.443 \quad, \quad \frac{6.443-0.4224}{8.0510}=0.7478 \quad\left[\because P_{8}=4 \mathrm{kF}\right] \\\left.x_{8}=\frac{10}{}\right]\end{array}\begin{aligned}h_{8} & =h_{f 8}+x_{8} h_{f_{8}}=121.3 .9+0.7478 \times 2432.3 \\h_{8} & =1940.26 \mathrm{~kJ} / \mathrm{kg} \quad h_{5}=h_{f} p_{5}=121.39 \mathrm{~kg} / \mathrm{kg} \\\left(\omega_{p}\right)_{2} & =v_{5}\left(P_{6}-P_{5}\right)=0.001004 \times(15-0.04)^{2} \times 10^{2} \\& =1.5 \mathrm{~kJ} / \mathrm{kg} \\h_{6} & =h_{5}+w_{P_{2}}=122.89 \mathrm{~kJ} / \mathrm{kg}\end{aligned}\begin{array}{l}\left(w_{T}\right)_{\text {sream }}=\left(h_{7}-h_{8}\right)=279-1940.26=850.79 \mathrm{~kJ} / \mathrm{k} \\\left(w_{p}\right)_{\text {sream }}=w_{P_{2}}=1.5 \mathrm{~kJ} / \mathrm{kg} \\\left(Q_{\text {s }}\right)_{\text {sream }}=h_{7-h_{6}}=2791-122.89=2668.11 \mathrm{~kJ} /\end{array}\left(Q_{\text {s }}\right)_{\text {sream }}=h_{7-h_{6}}=2791-122.89=2668.11 \mathrm{~kJ} /\begin{array}{l}n_{2}=\frac{\left(w_{T}\right)_{s}-\left(u_{p}\right) s}{\left(Q_{s}\right)_{s}}=\frac{850.74-1.5}{2668.11} \\\therefore n_{2}=0.31829\end{array}(4.1) Quevall ffficiency of cyclec\begin{array}{l}n_{\theta}=\eta_{1}+n_{2}-\eta_{1} \eta_{2} \\n_{0}=0.3098+0.31829-0.3098 \times 0.31829 \\n_{0}=0.5294=52.9 \%\end{array}(4.2) Here f low through (\mathrm{Hq}) turbin is:-\begin{array}{c}m_{+9}^{\prime}\left(h_{4}-h_{1}\right)=m^{\prime} s .\left(h_{7}-h_{6}\right) \\m^{\prime}+1 g\left(254.94^{\prime}-29.98\right)=48000(2791-129.89) \\\therefore m^{\prime}+g=5,69,298.009 \mathrm{~kg} \mathrm{hr}_{\mathrm{s}}\end{array}(4.3) useful workdone is io\begin{array}{l}\omega_{N_{2} t}=\left(\dot{w}_{T}-\dot{w}_{P}\right)_{\text {Strean }}+\left(\dot{W}_{T}-\dot{W}_{P}\right)_{\mathrm{Hg}} \\\omega_{\text {Net }}=\frac{489 p 00}{3600}(850.74-1.5)+\frac{5,69,298.009}{3600}(101.04-0.03412) \\\therefore \dot{w}_{\text {Net }}=15972.917 \mathrm{kw} \\\therefore \dot{w}_{\text {Net }}=15.972 \mathrm{mw}\end{array}Thank Yuu please HITIKE AND Comment For AnY QuIRES ...