Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
I have attached a image to solve the problems of the questions I hope it helps you and if so please UPVOTE and RATE my answersFor Hig cydeh_{l}=355.98 \mathrm{~kJ} / \mathrm{kg}s_{l}=0.5397 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}s_{l}=s_{m}s_{m}=s_{n}+x_{m}\left(s_{g}-s_{n}\right)0.5397=0.0808+x_{m}(0.6925-0.0808)x_{m}=0.7502n_{m} - quality at m5\begin{array}{l}h_{m}=h_{n}+n_{m}\left(h_{g}-h_{n}\right) \\h_{m}=29.98+0.7502(329.85-29.98)=254.94 \mathrm{~kJ} / \mathrm{kg} \\h_{n}=29.98 \mathrm{~kJ} / \mathrm{kg} \\W_{P H g}=\text { bump work for Hg }=v_{n}(1 P)=76.5 \times 10^{-6}(4.5-0.04) \times 100 \\=8.03412 \mathrm{~kJ} / \mathrm{kg} \\h_{k}=h_{n}+w_{P H g}=29.98+0.03412=30.014 \mathrm{ks} / \mathrm{kg} \\\end{array}For stream cycle \quad h_{1}=2791 \mathrm{ks} / \mathrm{kg} \quad s_{1}=6.443 \mathrm{~kJ} / \mathrm{kg}s_{1}=s_{2}=6.443 \mathrm{~kJ} / \mathrm{kg}\begin{array}{l} s_{2}=s_{f}+n_{2} s_{2} \text { at } 0.0413 a r \\6-443= 8.42239+n_{2} \times 8.0510 \quad n_{2}=0.7478 \\h_{2}=h_{f}+n_{2} h_{g}=121.39+0.7478 \times(2432.3) \\=1940.264 \mathrm{~kJ} 1 \mathrm{~kg}\end{array}\begin{aligned}\left(w_{p}\right)_{\text {water }} & =v_{3} \times \Delta p \times 100=0.0010041 \times(15-0.04) \times 100=1.502 \mathrm{ks} 1 \mathrm{~kg} \\h_{y} & =h_{3}+\left(w_{p}\right)_{\text {water }}=121.39+1.502=122.892 \mathrm{~kJ} 1 \mathrm{~kg}\end{aligned}\begin{array}{l}\left(h_{4}\right)_{\mathrm{Hg}}=\left(h_{1}-h_{m}\right)=355.48-254.94=101.04 \mathrm{~kJ} / \mathrm{kg} \\\left(b_{p}\right)_{\mathrm{Hg}}=0.03412 \mathrm{~kJ} / \mathrm{kg} \\\left(h_{\text {net }}\right) \mathrm{Hg}_{g}=\left(\omega_{p}\right)-\left.\left(\omega_{p}\right)\right|_{\mathrm{Hg}}=101.006 \mathrm{~kJ} 1 \mathrm{~kg}\end{array}\theta_{\text {Heat supplied }}\left(\theta_{S}\right)=\left(h_{l}-h_{k}\right)=355.98-30.014=325.966 \mathrm{~kJ} / \mathrm{kg}\begin{array}{l}\left(\theta_{R}\right)_{H g}=\left(\theta_{S}\right)_{H_{20}} \Rightarrow \quad m_{\mathrm{Hg}} \times 224.96=\frac{48000}{3600} \times 2668.108 \\\hat{m}_{\mathrm{Hg}}=158.138 \mathrm{~kg} / \mathrm{JeC} \quad \dot{m}_{\mathrm{H}} 20=13.33 \mathrm{~kg} / \mathrm{sPC} \\\eta_{\text {overall }}=\frac{158.138 \times 101.006+13.33 \times 849.234}{158.138 \times 325.966}=0.5295 \text { or } 52.95 \% \\\end{array}Ans(ii) Fow twrough merury turbine m^{\prime g g}=158.138 \mathrm{~kg} / \mathrm{sec} or 569296.8 \mathrm{~kg} / \mathrm{hour}Ans(iii)\begin{array}{l}\text { Useful 100rk }=\dot{m}_{H_{g}} \times\left(w_{\text {net }}\right)_{\mathrm{Hg}}+\dot{m}_{\mathrm{H}_{20}} \times\left(w_{\text {net }}\right)_{H_{20}} \\\begin{aligned}=158.138 \times 161.006+13.33 \times 849.234 & =\begin{array}{l}27293.176 \mathrm{KW} \\27.293 \mathrm{MW}\end{array} \\& =\text { Ans }\end{aligned} \\\end{array}(iv) \quad h_{1}^{\prime}=3038.2 \mathrm{~kJ} / \mathrm{kg} \quad s_{1}^{\prime}=6.9198 \mathrm{~kJ} / \mathrm{kg}=s_{2}^{\prime}Ansat 0.04 \mathrm{Bar} s_{g}=8.0510 \mathrm{~kJ} / \mathrm{kgk}>s_{2}^{\prime} \rightarrow it is in wet Region\begin{array}{l}\left(\theta_{\mathrm{g}}\right)_{\mathrm{Hg}}=\dot{m}_{\mathrm{Hg}} \times 325.966=172.746 \times 325.966 \\\eta_{\text {oveall }}=\frac{\left(W_{\text {nel })_{\mathrm{Kg}}} \times \dot{m}_{\mathrm{Hg}}+\left(W_{\text {nel }}\right)_{\mathrm{H}_{20}} \times \dot{m}_{H_{20}}\right.}{\dot{m}_{H_{G}} \times \theta_{\text {SHg }}} \\\end{array}\begin{aligned} \eta_{\text {overall }} & =\left(\frac{84.84 \times 172.746+13.33 \times 837.968}{172.746 \times 325.966}\right)=0.4586 \\ & \approx 45.86 \% \text { Ans }\end{aligned} ...