Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
SOLUTION: The variables that are to be related are as follows:Flow rate is Q, pressure is \Delta p, diameter is D, density is \rho, and angular speed is \omega Dimensions of the variables are:\begin{array}{l}Q=\frac{\mathrm{L}^{3}}{\mathrm{t}} \\\Delta p=\frac{\mathrm{M}}{\mathrm{Lt}^{2}} \\D=\mathrm{L} \\\rho=\frac{\mathrm{M}}{\mathrm{L}^{3}} \\\omega=\frac{1}{\mathrm{t}}\end{array}Number of parameters is n=5Number of primary dimensions, m=3Consider repeating variables as \rho, D, and \omegaSo, number of repeating variables is r=3Calculate number of dimensionless groups:\begin{aligned}n-m & =5-3 \\& =2\end{aligned} Apply Buckingham pi theorem.Calculate \pi_{1} term:\pi_{1}=Q \rho^{a} D^{b} \omega^{c}So,\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{t}^{0}=\left(\frac{\mathrm{L}^{3}}{\mathrm{t}}\right)\left(\frac{\mathrm{M}}{\mathrm{L}^{3}}\right)^{a} \mathrm{~L}^{b}\left(\frac{1}{\mathrm{t}}\right)^{c}Compare M terms:a=0Compare L terms:\begin{array}{l}0=3-3 a+b \\b=-3\end{array}Compare t terms:\begin{array}{l}0=-1-c \\c=-1\end{array}Write \pi_{1} term:\begin{aligned}\pi_{1} & =Q \rho^{0} D^{-3} \omega^{-1} \\& =\frac{Q}{D^{3} \omega}\end{aligned} Calculate \pi_{2} term:\pi_{2}=\Delta p \rho^{a} D^{b} \omega^{c}So,\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{t}^{0}=\left(\frac{\mathrm{M}}{\mathrm{Lt}^{2}}\right)\left(\frac{\mathrm{M}}{\mathrm{L}^{3}}\right)^{a} \mathrm{~L}^{b}\left(\frac{1}{\mathrm{t}}\right)^{c}Compare M terms:\begin{array}{l}0=1+a \\a=-1\end{array}Compare \mathrm{L} terms:\begin{array}{l}0=-1-3 a+b \\b=-2\end{array}Compare t terms:\begin{array}{l}0=-2-c \\c=-2\end{array}Write \pi_{2} term:\begin{aligned}\pi_{2} & =\Delta p \rho^{-1} D^{-2} \omega^{-2} \\& =\frac{\Delta p}{\rho D^{2} \omega^{2}}\end{aligned} The two functions are related as \pi_{2}=f\left(\pi_{1}\right)So,\frac{\Delta p}{\rho D^{2} \omega^{2}}=f\left(\frac{Q}{D^{3} \omega}\right)From the data, it is assumed to be a parabolic expression.\frac{\Delta p}{\rho D^{2} \omega^{2}}=a+b\left(\frac{Q}{D^{3} \omega}\right)+c\left(\frac{Q}{D^{3} \omega}\right)^{2}Here,Density, \rho=1.94 \mathrm{slug} / \mathrm{ft}^{3}Speed,\begin{aligned}\omega & =800 \mathrm{rpm} \\& =(800 \times 2 \pi) / \mathrm{min} \\& =\left(\frac{800 \times 2 \pi}{3600}\right) / \mathrm{s}\end{aligned}Diameter, D=1 \mathrm{ft}Table shows the vales of flow rate and pressures. Plot the graph with \frac{\Delta p}{\rho D^{2} \omega^{2}} versus \frac{Q}{D^{3} \omega}.       P.S: If you are having any doubt, please comment here, I will surely reply you.Please provide your valuable feedback by a thumbsup. Your thumbsup is a result of our efforts. Your LIKES are very important for me so please LIKE….Thanks in advance! Please like my solution, its my sincere request, I am in really bad situation, your "upvote" helps me a lot.     ...