Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Calculate the Biot number.\mathrm{Bi}=\frac{h L_{c}}{k}=\frac{h r_{0}}{3 k}=\frac{1000 \frac{\mathrm{W}}{\mathrm{m}^{2} \cdot \mathrm{K}} \times \frac{0.2}{2} \mathrm{~m}}{3 \times 50 \frac{\mathrm{W}}{\mathrm{m} \cdot \mathrm{K}}}=0.667As the Biot number is greater than 0.1 , the lumped capacitance method is not going to be used and use the approximate solution. For approximate solution, calculate Biot number.\mathrm{Bi}=\frac{h r_{0}}{k}=\frac{1000 \frac{\mathrm{W}}{\mathrm{m}^{2} \cdot \mathrm{K}} \times \frac{0.2}{2} \mathrm{~m}}{50 \frac{\mathrm{W}}{\mathrm{m} \cdot \mathrm{K}}}=2From the coefficients used in the one-term approximation to the series solutions for transient one-dimensional conduction, The coefficients for the Biot number 2 are given by C_{1}=1.4793 and \zeta_{1}=2.0288 (For sphere).Using the approximate solution considering total energy transfer,\begin{aligned}\theta_{o}^{*} & =\left(1-\frac{Q}{Q_{0}}\right) \frac{\zeta_{1}^{3}}{3\left[\sin \left(\zeta_{1}\right)-\zeta_{1} \cos \left(\zeta_{1}\right)\right]} \\& =(1-0.7) \frac{2.0288^{3}}{3[\sin (2.0288)-2.0288 \times \cos (2.0288)]} \\& =0.4655\end{aligned}Calculate the Fourier number.\mathrm{Fo}=-\frac{1}{\zeta_{1}^{2}} \ln \left(\frac{\theta_{o}^{*}}{C_{1}}\right)=-\frac{1}{2.0288^{2}} \ln \left(\frac{0.4655}{1.4793}\right)=0.281Calculate the residence time of the balls within the chamber.t=\mathrm{Fo}_{\mathrm{o}} \frac{r_{0}^{2}}{\alpha}=0.281 \times \frac{\left(\frac{0.2}{2} \mathrm{~m}\right)^{2}}{2 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}}=140.5 \mathrm{sec}Calculate the drive velocity.V=\frac{L}{t}=\frac{5 \mathrm{~m}}{140 \mathrm{sec}}=0.036 \mathrm{~m} / \mathrm{sec} ...