A cracked beam is subjected to a pair of forces at the center of the crack (see Figure).
a) Find the energy release release G.
b) Find the minimum P that can split the beam. Assume E = 70 GPa and Gc = 200 N.m/m2.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
strain energyrelease rate.G=\pi \times \sigma^{2} \times \frac{a}{E}a \doteq kalf crank leugth=10 \mathrm{~cm}=0.1 \mathrm{~m}\begin{array}{l}E=70 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \\G=200 \\\sigma=\sqrt{4.456 \times 10^{13}} \Rightarrow 6675581.178 \mathrm{~N} / \mathrm{m}^{2}\end{array}To find the load P\begin{array}{l}\sigma=\frac{P}{A} \\P=6675581.178 \times\left(0.2 \times 0.5 \times 10^{-2}\right) \\P=6675.58 \mathrm{~N} \\P=6.675 \mathrm{kN}\end{array} Solution(a)Draw Free Body DiagramFind roment of Inertia for specified dimensiousI=\frac{t h^{3}}{12}here t=0.5 \mathrm{~cm}=0.005 \mathrm{~m}\begin{array}{l}\quad h=1 \mathrm{~cm}=0.01 \mathrm{~m} \\I=\frac{0.005(0.01)^{3}}{12}\end{array}I=4.166666667 \times 10^{-10} \mathrm{~m}^{4}Let beam (1) is a cantilevar beam with tip load P / 2Slope at tip \left(Q_{P}\right)=(P / 2) \frac{a^{2}}{2 E I}SLope due to tip moment (\theta \mathrm{m})\begin{array}{c}\theta_{m}=-\frac{m a}{E I} \\\theta p+\theta_{m}=0 \\\frac{\left(\frac{p}{2}\right) a^{2}}{2 E I}-\frac{m a}{E I}=0 \\m=\frac{p}{4} a\end{array}The moment distribution along LengthM(x)=\frac{p}{2} x-\frac{p}{4} aStram energies\begin{array}{l}v_{1}=v_{2}=\int_{0}^{a} \frac{M\left(x^{2}\right) d x}{2 E I} \\v_{1}=U_{2}=\frac{1}{2 E I} \int_{0}^{a}\left[\frac{p x}{2}-\frac{p a}{u}\right]^{2} d x \\=\frac{1}{2 E I} \int_{0}^{a}\left[\frac{p^{2} x^{2}}{4}+\frac{p^{2} a^{2}}{16}-\frac{p^{2}}{\frac{x a}{4}}\right] d x \\\end{array}Integrate above equation\begin{array}{l}U_{1}=U_{2}=\frac{1}{2} E I\left[\frac{p^{2} x^{3}}{12}+\frac{p^{2} a^{2} x}{16}-\frac{p^{2} x^{2} a}{8}\right]_{0}^{a} \\U_{1}=v_{2}=\frac{1}{2} E I\left[\frac{p^{2} a^{3}}{12}+\frac{p^{2} a^{3}}{16}-\frac{p^{2} q^{3}}{8}\right]\end{array}\begin{array}{l}U_{1}=U_{2}=\frac{1}{2 E I}\left[\frac{8 p^{2} a^{3}+6 p^{2} a^{3}-8 p^{2} a^{3}}{96}\right] \\U_{1}=U_{2}=\frac{1}{2 E I}\left[\frac{2 p^{2} a^{3}}{96}\right] \\U_{1}=U_{2}=\frac{p^{2} a^{3}}{96 E I}\end{array}Total Strain energles (V)=v_{1}+v_{2}+v_{3}\begin{array}{l}U=\frac{p^{2} a^{3}}{96 E I}+\frac{p^{2} a^{3}}{96 E I}+0 \\U=\frac{p^{2} a^{3}}{48 E I} \rightarrow \begin{array}{l}\text { Total } \\\text { Struin } \\\text { energy }\end{array}\end{array}Strain energy recease rate\begin{array}{l}G=\frac{1}{t} \frac{d u}{d a}=\frac{1}{t} \frac{d}{d a}\left[\frac{p^{2} a^{3}}{48 E I}\right] \\G=\frac{1}{t} \frac{p^{2}\left(3 a^{2}\right)}{48 E I} \\G=\frac{p^{2} a^{2}}{16 E I t} \rightarrow \rightarrow \begin{array}{c}\text { Strain ehergy } \\\text { release rate }\end{array}\end{array}Crack will propagate if G \geq G G\begin{aligned}G=G_{c} & =\frac{P_{\min }^{2} a^{2}}{16 E I t} \\P_{\min } & =\sqrt{\frac{16 E I t G_{c}}{a^{2}}} \\\text { Here } E & =70 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \\G_{c} & =200 \mathrm{~N} \cdot \mathrm{m} / \mathrm{m}^{2}\end{aligned}\begin{array}{l}t=0.5 \mathrm{~cm}=0.005 \mathrm{~m} \\ I=4.16666667 \times 10^{-10} \mathrm{~m}^{4} \\ a=10 \mathrm{~cm}=0.1 \mathrm{~m} \\ P_{\text {min }}=\sqrt{\frac{16 \times 70 \times 10^{9} \times 4.167 \times 10^{-10} \times 0.005 \times 200}{(0.1)^{2}}} \\ P_{\text {min }}=\sqrt[46666.66666]{P_{\text {min }}=216.02 \mathrm{~N}} \\ P_{\text {min }} \approx 216 \mathrm{~N} \rightarrow \text { Result }\end{array} ...