Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
a) first calculate Reynold number (Re)R e=\frac{d v \rho}{\mu} \text { where } \begin{aligned}d & =0.015 \mathrm{~m} \\v & =0.3 \mathrm{~m} / \mathrm{s} \\\rho & =1,240 \mathrm{~g} / \mathrm{m}^{3}\end{aligned}\mu of glycerol at 60^{\circ} \mathrm{C} is 0.082226 \mathrm{~Pa}-\mathrm{s}\text { So } \begin{aligned}R e & =\frac{0.015(\mathrm{~m}) \times 0.3(\mathrm{~m} / \mathrm{s}) \times 1240\left(\mathrm{~kg} / \mathrm{m}^{3}\right)}{0.082226(\mathrm{Pa-s})} \\R e & =67.8617\end{aligned}\operatorname{Re}<2300 that mean laminar JlowSo transition length, L_{H}=0.05 \operatorname{Re}(d)\begin{array}{l}L_{H}=0.05 \times 67.8617 \times 0.015 \\L_{H}=0.0509 \mathrm{~m}\end{array}b) find Re, \quad R e=\frac{d v \rho}{\mu}\begin{array}{l}d=3 \mathrm{in}=0.0762 \mathrm{~m}, \quad v=7 \mathrm{ft} / \mathrm{s}=2.1336 \mathrm{~m} / \mathrm{s} \\\rho=50 \mathrm{~b} / \mathrm{ff}^{3}=800.923 \mathrm{~kg} / \mathrm{m}^{3}\end{array}\mu of n-propyl alcohol at 30^{\circ} \mathrm{C}=1.8 \times 10^{-3} \mathrm{~Pa}-\mathrm{s}\text { So } \begin{aligned}R e & =\frac{0.0762(\mathrm{~m}) \times 2.1336(\mathrm{~m} / \mathrm{s}) \times 800.923\left(\mathrm{~kg} / \mathrm{m}^{3}\right)}{1.8 \times 10^{-3}(\mathrm{~Pa}-\mathrm{s})} \\R e & =72,341.2878\end{aligned}R e .72900, so that mean turbulent flow for turbulent flow, transition length, H_{1}=10 D\begin{array}{l}L_{H}=10 \mathrm{~d}, \quad L_{H}=10 \times 0.0762=0.762 \mathrm{~m} \\L_{H}=0.762 \mathrm{~m} \text { or } L_{H}=30 \mathrm{in}\end{array} ...