A long flat aluminum bar is subjected to a tensile load. The bar has a hole drilled through it. The width of the bar = 3 in The thickness of the bar = 0.4 in The hole diameter = 0.6 in The tensile load = 17 kips
Gross area (before the hole is drilled?
Average Stress before the hole is drilled?
Net width (d) (after the hole is drilled)?
r/d ?
K?
Net area (after the hole is drilled)?
Average net stress at the hole?
Maximum stress adjacent to the hole ?
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Ans:Given DataWidth of the bar =3 inches\begin{aligned}\text { Thickness of bar } & =0.4 \text { inches } \\\text { Hole diameter } & =0.6 \text { inches } \\\text { Tensile load } & =17 \mathrm{kips} \\& =17000 \mathrm{lbs}\end{aligned}Gross stress:gross crosssectional Area of the bar away from hole =3 inches \times 0.4 inches=1.2 \text { inches }{ }^{2}\begin{aligned}\therefore \text { Gross stress } & =\frac{\text { Tensile load }}{\text { cross sectional Area }} \\& =\frac{17000}{1.2} \\\Rightarrow \text { Gross stress } & =14166.66 \mathrm{Psi} \\& =14.166 \mathrm{kPsi} \\\therefore \text { Gross stress } & =14.166 \mathrm{kPsi}\end{aligned}Average Net stress at hole:\begin{aligned}\text { Net area } & =2[1.2 \times 0.4]+\left[\frac{\pi \times 0.6}{2} \times 0.4\right] \\& =0.96+0.37699 \\& =1.336 \mathrm{in}^{2} \\\therefore \text { Net Area } & =1.336 \text { inches }^{2}\end{aligned}\begin{aligned}\therefore \text { Average Net stress } & =\frac{\text { Tensile load }}{\text { Net area }} \\\Rightarrow \text { Average Net stress } & =\frac{17000}{1.336} \\& =12715.11 \mathrm{Psi} \\& =12.715 \mathrm{kPsi}\end{aligned}\begin{aligned}\therefore \text { Maximum Tensile stress } & =\text { gross stress } \\& =14.166 \mathrm{kPsi}\end{aligned}\rightarrow Gross stress =14.166 \mathrm{KPsi}\rightarrow Average stress away =14.166 \mathrm{kPsi}\rightarrow Net width =1.9 \times 2+\frac{\pi \times 0.6}{2}=3.3424 inches\rightarrow \quad r / d=\frac{0.3}{0.6}=\frac{1}{2}\rightarrow Net Area =1.336 \mathrm{in}^{2}\rightarrow Average stress @ hole =12.715 \mathrm{kPsi}\rightarrow Maximum stress =14.166 KPsi ...