Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
No. of ways 6 selention can be made from 45=45 C_{6}a)P(\text { all } 6 \text { coure trom day })=\frac{{ }^{20} C_{6}}{4 \mathrm{SC}_{6}}=4.759 \times 10^{-3}\text { Ausa } 4.759 \times 10^{-3}(b) P( all 6 come from 1 shift )=P(B)\frac{{ }^{20} C_{6}+{ }^{15} C_{6}+{ }^{10} C_{6}}{45 C_{6} .}=5.399 \times 10^{-3}c) Probability, that at least 2 shift are repeesented =1 - Probability that all come from 1 shift =1-0.0053991-P(B)=0.9946 \text { Ans } Cd) It A_{1} is the event that 1 st shift in upresentented A_{2} " " " 2^{\text {nd }} "A_{3} " " " " 3^{\text {rd }}\begin{array}{l}P\left(A_{1} \cup A_{2} \cup A_{3}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)-P\left(A_{1} \cap A_{2}\right) \\-P\left(A_{2} \cap A_{3}\right)-P\left(A_{1} \cap A_{3}\right)-P\left(A_{1} \cap A_{2} \cap A_{3}\right. \\=\frac{25 C_{6}}{45 C_{6}}+\frac{{ }^{30} C_{6}}{45 C_{6}}+\frac{35 C_{6}}{45 C_{6}}-P(B)-0+P\left(A ^ { S } \left\{A_{1} A^{\left.A_{2}\right)+P\left(A_{2} \cap A_{3}\right)}\right.\right. \\=0.3 \text { Ahs } d \\\end{array} ...