Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Given thatLength of the round bar, 2 LAngular speed, \omegaWeight density of the bar material, yConsider segment C B :Let F_{x} be the axial force in the bar at section DLet d_{m} be the mass of the element which is at a distance t from ' C^{\prime} Thickness of the element d tLet d F be the inertia force of the elementd F=d m\left(t \omega^{2}\right)d F=\left(\frac{\gamma}{g} A d t\right) t \omega^{2}Where A-cross sectional area of the bard F=\left(\frac{\gamma}{g} A \omega^{2}\right) t d t\int_{0}^{F_{x}} d F=\int_{x}^{L}\left(\frac{y}{g} A \omega^{2}\right) t d tF_{x}=\frac{\gamma}{g} A \omega^{2}\left(\frac{t^{2}}{2}\right)_{x}^{L}F_{x}=\frac{\gamma}{g} A \omega^{2}\left(\frac{L^{2}-x^{2}}{2}\right)F_{x}=\frac{y}{2 g} A \omega^{2}\left(L^{2}-x^{2}\right)(a) Tensile stress in the bar at distance x from the mid point ' C^{\prime}\begin{array}{l}\sigma_{x}=\frac{F_{x}}{A} \\\sigma_{x}=\frac{\gamma}{2 g} \omega^{2}\left(L^{2}-x^{2}\right)\end{array}(b) Maximum tensile stress \left(\sigma_{\max }\right) is obtained at x=0\begin{array}{c}\sigma_{\max }=\frac{\gamma \omega^{2}}{2 g}\left(L^{2}-0\right) \\\sigma_{\max }=\frac{\gamma \omega^{2} L^{2}}{2 g}\end{array} ...