Please write legibly and show all work. Thank you.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
SalutionGiven\begin{array}{l}L=2 H, R=100 \Omega \\V=9 V\end{array}a) At t=0, the switch S is closedand the circuit is completed.From kirchoft"s Voltage rull,\begin{aligned}V_{L}+V_{R} & =V \\L \frac{d i}{d t} & +i R=V \\L \frac{d i}{d t}=V-i R \Rightarrow & \int_{0}^{i} \frac{d i}{V-i R}=\int_{0}^{t} \frac{d t}{L}\end{aligned}-) on integrating weget\begin{array}{l} i(t)=i_{0}\left(1-e^{-t / \tau}\right), \text { where } i_{0}=\frac{V}{R} \\\tau=L / R \\\Rightarrow i(t=5.8 \mathrm{~ms})=\frac{9}{100}\left[1-e^{-\frac{5.8 \times 10^{-3}}{\alpha} \times 100}\right] \\\Rightarrow i=9 \times 10^{-2}\left[1-e^{-0.29}\right], 9 \times 10^{-2}[1-0.748]\end{array}\begin{array}{c}\Rightarrow i(5.8 \mathrm{~ms})=0.02268 \mathrm{~A} \\i=22.68 \mathrm{~mA}\end{array}B) Maximum Power delivered by the Rower suthby\begin{aligned}P & =i_{\max }^{2} R=\frac{v^{2}}{R} \quad\left[\because i_{\text {max }}=\frac{v}{R}\right] \\\Rightarrow P=\frac{(q)^{2}}{100} & =0.81 \text { Watt }\end{aligned}please upvote ud83dudc4d Comment for any doubt ...