Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
SolutionGiven data\begin{aligned}k & =400 \mathrm{w} / \mathrm{m} \cdot \mathrm{k} ; \alpha=10^{-4} \mathrm{~m}^{2} / \mathrm{s} \\h & =150 \mathrm{w} / \mathrm{m}^{2} \cdot \mathrm{k} ; \quad T_{\infty}=300^{\circ} \mathrm{C} ; T_{i}=25^{\circ} \mathrm{C} \\t=t_{m} & =400 \mathrm{sec} .\end{aligned}The termal response of transient conduction in a semiinfinite solid is\begin{aligned}\frac{T_{(x, t)}-T_{i}}{T_{\infty}-T_{i}}=\operatorname{erfc}\left[\frac{x}{2(\alpha t)^{1 / 2}}\right]- & {\left[\exp \left[\frac{h x}{k}+\frac{h^{2} \alpha t}{k^{2}}\right]\right] } \\& *\left[\operatorname{erfc}\left[\frac{x}{2(\alpha t)^{1 / 2}}+\frac{h(\alpha t)^{1 / 2}}{k}\right]\right]\end{aligned}when \left.x=0 ; T^{T}(x, t)=T_{(0, t)}\right)=T_{s} and \operatorname{erfc}(0)=1.\begin{array}{l}\frac{T_{s}-T_{i}}{T_{\infty}-T_{i}}=1-\exp \left[\frac{h^{2} \alpha t}{k^{2}}\right] \operatorname{ertc}\left[\frac{h(\alpha t)^{1 / 2}}{k}\right] \\\frac{T_{s}-T_{i}}{T_{\infty}-T_{j}}=1-\exp \left[\frac{(150)^{2}\left(10^{-4}\right)(400)}{(400)^{2}}\right] \operatorname{erfc}\left[\frac{150\left(10^{-4} \times 400\right)^{1 / 2}}{400}\right] \\\frac{T_{s}-25}{300-25}=1-[\exp (0.005625) * \operatorname{erfc}(0.075)] \\T_{s}-25=275[1-(1.00564)(0.9155)]\end{array}\begin{aligned}& { }^{s}-25=21.817 \\\Rightarrow & T_{s}=21.817+25 \\& T_{s}=46.817^{\circ} \mathrm{C}\end{aligned}\therefore The melting point of Coating is T_{S}=46.87^{\circ} \mathrm{C} ...