Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Calculate the melting point temperature of the surfaced coating at a distance x=0 if the melting observed to occur at time 400 \mathrm{~s}.\begin{array}{l}\frac{T(x, t)-T_{i}}{T_{\infty}-T_{i}}=\operatorname{erf}\left(\frac{x}{2 \sqrt{\alpha t}}\right)-\left[\exp \left(\frac{h x}{k}+\frac{h^{2} \alpha t}{k^{2}}\right)\right]\left[\operatorname{erfc}\left(\frac{x}{2 \sqrt{\alpha t}}+\frac{h \sqrt{\alpha t}}{k}\right)\right] \\\frac{T(0, t)-25}{300-25}=\left\{\begin{aligned}\operatorname{erfc}\left(\frac{0}{2 \sqrt{10^{-4} \times 400}}\right) \\-\left\{\begin{array}{l}{\left[\exp \left(\frac{(200)(0)}{400}+\frac{(200)^{2}\left(10^{-4}\right)(400)}{(400)^{2}}\right)\right]} \\\times\left[\operatorname{erfc}\left(\frac{0}{2 \sqrt{10^{-4} \times 400}}+\frac{\left.200 \times \sqrt{10^{-4} \times 400}\right)}{400}\right)\right]\end{array}\right\}\end{aligned}\right\} \\\frac{T_{s}-25}{300-25}=\left\{\operatorname{erfc}(0)-\left\{\left[\exp \left(0+\frac{(4)(400)}{160000}\right)\right] \times\left[\operatorname{erfc}\left(0+\frac{0.2}{2}\right)\right]\right\}\right\} \\T_{s}-25=275 \times\{\operatorname{erfc}(0)-\{[\exp (0.01)] \times[\operatorname{erfc}(0.1)]\}\} \\T_{s}=25+275 \times\{\operatorname{erfc}(0)-\{[\exp (0.01)][\operatorname{erfc}(0.1)]\}\} \\\end{array}Obtain the Gaussian error function value at \operatorname{erf}(0) from the Table Gaussian Error Function at the value w=0. \operatorname{erf}(0)=0Calculate the complementary error function value at w=0. \operatorname{erfc} w=1-\operatorname{erf} w \operatorname{erfc}(0)=1-\operatorname{erf}(0.00)=1-0=1Obtain the Gaussian error function (\operatorname{erf} w) value from the Table Gaussian Error Function at the value w=0.10 : \operatorname{erf}(0.1)=0.11246Calculate the complementary error function value at w=0.10. \operatorname{erfc} w=1-\operatorname{erf} w\operatorname{erfc}(0)=1-\operatorname{erf}(0.10)=1-0.11246=0.88754Plug the values in equation (1).\begin{aligned}T_{s} & =25+275 \times\{\operatorname{erfc}(0)-\{[\exp (0.01)][\operatorname{erfc}(0.1)]\}\} \\& =25+275 \times\{1-1.01 \times 0.88754\} \\& =25+275 \times 0.10354 \\& =53.5^{\circ} \mathrm{C}\end{aligned} ...