A square-shaped circuit with side a lies on the xy plane (the origin is in the center of the square and its sides are parallel to the axes). If a current of intensity I flows through the circuit, calculate the magnetic field B at a) the cent of the square, b) at the point (a / 2, a / 2), c) at the point (a, 0,0 ) and d) at the point (a / 2,0, -a / 2)
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Answer:-Let current flows clockwire in circuit as direction shown in figure. Magnetic field duc to wire forming angle \phi_{1}, \phi_{2} at some point is given byWe can tell dircction of field by right hand palm rulea) All four wires causes magnetic field going inside page, \phi_{1}=\phi_{2}=45^{\circ}, d=a / 2For all fowr wiresB=\frac{\mu_{0} I}{4 \pi d}\left(\sin \phi_{1}+\sin \phi_{2}\right) \otimesthe signshows field goes inide the pageso let \vec{B} due to A D=\frac{\mu_{0} I}{4 \pi\left(\frac{a}{2}\right)}\left[\sin 45^{\circ}+45^{\circ}\right] \otimesso cotal \vec{B} due to all four wires =4 \vec{B}_{A D}=\frac{2 \mu_{0} I}{\pi a}\left[\frac{2}{\sqrt{B}}\right] \otimes \left.\vec{B}=\frac{2 \sqrt{2} \mu_{0} I}{\pi a}\right] \otimes{ }_{p} going inende page(b)We need to calculate field at c \equiv(a / 2, a / 2)Field duc to D C, B B=0as point lies on the wires D C, C BDue to AD\begin{array}{l}\vec{B}_{A D}=\frac{\mu_{0} I}{4 \pi a}\left(\sin 0^{\circ}+\sin 45^{\circ}\right) \otimes \\\vec{B}_{A B}=\vec{B}_{A D} \\\text { so } \vec{B}_{\left(\frac{a}{2}, \frac{a}{2}\right)}=\vec{B}_{A B}+\overrightarrow{B B}_{A D}=2 \vec{B}_{A B}=\frac{\mu_{0} I}{2 \sqrt{2} \pi a} \otimes\end{array}i^{0 \circ} 45by symmetry these two are equal\begin{array}{l}\vec{B}_{A D}=\frac{\mu_{0} I}{4 \pi\left(\frac{3 a}{2}\right)}[\sin \theta+\sin \theta]=\frac{\mu_{0} I}{3 \pi a}\left[\frac{1}{\sqrt{10}}\right] \cdot \theta \\\vec{B} B=\frac{\mu_{0} I}{4 \pi\left(\frac{a}{2}\right)}\left[\sin 45^{\circ}+\sin 45^{\circ}\right]=\frac{\mu_{0} I}{\sqrt{2} \pi a} \otimes \\\overrightarrow{B C D}=\frac{\mu_{0} I}{4 \pi\left(\frac{a}{2}\right)}\left[\sin \left(-45^{\circ}\right)+\sin \left[90^{\circ}-\theta\right]\right]=\vec{B}_{A B} \\\text { so } \left.\vec{B}=\frac{\mu_{0} I\left[\frac { 1 } { \pi a } \left[\frac{1}{3 \sqrt{10}}+\frac{\sqrt{2}}{\sqrt{2}}+\left(\frac{-1}{\sqrt{2}}\right)+\cos 90^{\circ} \theta-\cos 90^{\circ} \sin \theta\right.\right.}{0}\right] \otimes \\\end{array}{ }_{B}(a, 0)=\frac{\mu_{0} I}{\pi a}\left[\frac{1}{3 \sqrt{10}}+\frac{3}{\sqrt{10}}\right]=\frac{\sqrt{10} \mu_{0} I}{3 \pi a} \otimesDrswer (C)(d) at (a / 2,0,-a / 2)P lies on x z planeFor A D\begin{aligned}d=E P & =\sqrt{\left[\frac{a}{2}-\left(-\frac{a}{2}\right)\right]^{2}+\left(0-\frac{a}{2}\right)^{2}} \\& =\frac{\sqrt{5} a}{2}\end{aligned}on\sin \theta_{1}=\sin \theta_{2}=\frac{D E}{E P}=\frac{a / 2}{\sqrt{\frac{5}{2} a}}=\frac{1}{\sqrt{5}}(1) shan disection of 2 anix\begin{array}{l}\mid \vec{B}_{A D}=\frac{\mu_{0} I}{4 \pi\left(\frac{\sqrt{5} a}{2}\right)}\left(\frac{2}{\sqrt{5}}\right)=\frac{\mu_{0} I}{5 \pi a} \hat{P X} \quad \hat{P X}=\left(\frac{-1}{\sqrt{5}} \hat{x}-\frac{-2}{\sqrt{5}} \hat{z}\right) \\\text { dareation } \vec{B}_{D C}=\frac{\mu_{0} I}{4 \pi(p C)}\left(\frac{D C}{D P}+\hat{\theta}\right) \hat{P} \hat{y} \quad \hat{P Y}=\left(\frac{1}{\sqrt{2}} \hat{y}-\frac{1}{\sqrt{2}} \hat{z}\right)\end{array}\begin{array}{l}\vec{B}_{D C}=\frac{\mu_{0} I}{4 \pi\left(\frac{a}{\sqrt{2}}\right)}\left(\frac{a}{\sqrt{2 a \frac{5}{4} a^{2}+\frac{a^{2}}{4}}}\right)\left(\frac{1}{\sqrt{2}} \hat{y}-\frac{1}{\sqrt{2}} \hat{z}\right) \\=\frac{\mu_{0} I}{-\pi a}\left[\frac{\sqrt{2}}{A_{2}} \times \frac{2}{\sqrt{6}}\right]\left(\frac{\hat{y}}{\sqrt{2}}-\frac{\hat{z}}{\sqrt{2}}\right) \\=\frac{\mu_{0} I}{2 \sqrt{3} \pi a}\left(\frac{\hat{y}}{\sqrt{2}}-\frac{\hat{z}}{\sqrt{2}}\right) \\\end{array}\text { also } \begin{array}{l} \vec{B}_{A B}=\frac{\mu_{0} I}{2 \sqrt{3} \pi a}\left(-\frac{\hat{y}}{\sqrt{2}}-\frac{\hat{z}}{\sqrt{2}}\right) \vec{B}_{B C}=\frac{\mu_{0} I}{4 \pi\left(\frac{a}{2}\right)}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \hat{n} \\\vec{B}_{B C}=\frac{\mu_{0} I}{\sqrt{2} \pi a} \hat{x}\end{array}\begin{array}{l}=\frac{\mu_{0} I}{5 \sqrt{5} a} \hat{x}-\frac{2 \mu_{0} I}{5 \sqrt{5} a}+\frac{\mu_{0} I}{2 \sqrt{3} \pi a}(-\sqrt{2} \hat{z})+\frac{\mu_{0} I}{\sqrt{2} \pi a} \hat{x} \\\left.=\sqrt{\frac{\mu_{0}}{\pi a}\left[\left(\frac{1}{\sqrt{2}}-\frac{1}{5 \sqrt{5}}\right) \hat{x}\right.}\left(\frac{1}{\sqrt{6}}+\frac{2}{5 \sqrt{5}}\right) \hat{z}\right] \\\end{array}Dswer (d) ...